HYDROLOGY AND WATER QUALITY OF

THE COPPER-NICKEL STUDY REGION,

NORTHEASTERN MINNESOTA

By Donald I. Siegel and Donald W. Ericson

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 80-739

Open-File Report

Prepared in cooperation with Minnesota Environmental Quality Board Copper-Nickel Study Staff UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. William Menard, Director

Open-File Report

For additional information write to:

U.S. Geological Survey 702 Post Office Building St. Paul, Minnesota 55101

CONTENTS _____

.

_

	Page
Conversion table	vi
Abstract	1
Introduction	2
Methods	2
Ground water	4
Occurrence and movement	4
Availability	11
Water quality	11
Surface water	24
General description	24
Flow characteristics	37
Water quality	58
Hydrologic budget	71
Water use	71
Potential impacts of mining on the hydrologic system	79
Mine dewatering	79
Additional water use	82
Water quality	82
Summary and conclusions	84
References	87

ILLUSTRATIONS

	-		Page
Plate	1.	Generalized map of the water table in the Copper-Nickel study region, northeastern Minnesotain	back
Figure	1.	Map showing location of Copper-Nickel study region	3
	2.	Map showing physiographic areas of the Copper-Nickel study region	6
	3.	Hydrographs showing the water table in the till and the cumulative departure curve from mean monthly precipitation recorded at Babbitt, Minnesota	8
	4.	Hydrographs showing water table in sand and gravel	9
	5.	Graph showing relationship between depth of observation well and lag time in water-level response to major trends in cumulative departure from normal precipitation at Babbitt, Minnesota.	10
	6.		12
	7.		17
	8.	Piper plot and semilogarithmic graphs of ground-water quality in surficial materials	18

ILLUSTRATIONS

			Page
Figure	9.	Map showing generalized copper distribution in ground water	
		from surficial materials (data from October or April 1976)	22
	10.	Map showing generalized nickel distribution in ground water	
		from surficial materials (data from October or April 1976)	23
	11.	Piper plot and semilogarithmic graphs of ground-water	•
		quality in the Duluth Complex and Giants Range Granite	26
	12.	Piper plot and semilogarithmic graphs of ground-water quality	
		in the Biwabik Iron-formation and the Virginia Argillite	27
	13.	Graph showing the relationship between specific conductance	
	•	and selected constituents in ground water collected from	
		the Copper-Nickel study area	28
	14.	Map showing location of surface-water data stations	
		including low-flow sample sites	29
	15a.	Channel profile of the Kawishiwi River in the Copper-Nickel	
		study region	33
	15b.	Channel profiles of the Stony and Isabella Rivers in the	55
	1)~•	Copper-Nickel study region	34
	15c.	Channel profiles of the St. Louis and Partridge Rivers in	5.
	-)0.	the Copper-Nickel study region	35
	150.	Channel profiles of the Embarrass, Dunka, and Bear Island	J
	1)u.	Rivers and Filson Creek in the Copper-Nickel study region	36
	16.	Annual hydrographs of streams in the St. Louis River basin	38
	17.	Annual hydrographs of streams in the Kawishiwi River basin	39
	18.	Long-term hydrographs of selected streams in the Copper-	29
	10.	Nickel study region	40
	19.	Duration curves of daily flow in streams in the St. Louis	40
	19.	River basin	41
	20.	Duration curves of daily flow of streams in Kawishiwi River	41
	20.	basin	42
	21.	Duration curves of daily flow per square mile of streams in	42
	210	St. Louis River basin	43
	22.	Duration curves of daily flow per square mile of streams in	43
	22.	Kawishiwi River basin	44
	\mathbf{a}	Graphs of high-flow frequency curves of the Partridge River	44
	23.	near Aurora, 1943–77	46
	24.	Graphs showing low-flow frequency curves of the Stony River,	40
	24.	near Isabella, 1959–77	47
	25.	Graphs showing flood-frequency curves at gaging stations	4(
	29.		51
	26.	having 10 or more years of record	51
	20.	Graphs showing statistics on monthly average discharge of	56
	07	the Embarrass River	56
	27.	Graph showing daily range of water temperature, specific	
		conductance, and daily mean discharge of the Stony River	65
	28.	near Babbitt, Minnesota, 1976 water year	05
	20.	Graph showing specific conductance-discharge relationship	66
	20	for unregulated streams Graph showing water temperature, specific conductance, and	00
	29.	daily moon discharge of the Durke Diver noon Poblict	
		daily mean discharge of the Dunka River near Babbitt,	67
		Minnesota, 1976 water year	01

ILLUSTRATIONS

		Page
Figure 30.	Kawishiwi River near Ely, Minnesota, 1967-77 water years	69
31.	Graphs showing discharge, specific conductance, and water temperature of the Stony River near Babbitt, Minnesota, July 26 to August 1, 1976	70
32.	Map showing locations of the stream gages and precipitation stations for the Kawishiwi River watershed above Winton, and St. Louis River watershed above Aurora, Minnesota	73
33.	•	75
34.	Graph showing total water use expressed as cumulative percentage	76
35.	Graph showing ground-water use expressed as cumulative percentage	77
36.	Graph showing total water use, 1971-76, by major use (excluding hydroelectric and thermoelectric usage)	78
37.	Map showing hypothetical mining areas and mine sites (from data supplied by the Regional Copper-Nickel Study Staff,	81
38.	1978) Graph theoretical distance-drawdown curves for a well pumping from the aquifer underlying the Embarrass River	83

TABLES

-

Table	1.	Geologic units and their lithologic and water-bearing characteristics	13
	2.	Ground-water availability by physiographic areas	14
	3.	Specific capacities of selected wells in sand and gravel aquifers.	15
	4.	Specific capacities of selected wells in bedrock aquifers	16
	5.	Quality of ground water from surficial materials, 1976	20
	6.	Summary statistics of selected dissolved trace and minor	
		metals in water from surficial materials	21
	7.	Representative water analyses from major bedrock types in the	
			25
	8.	Streamflow data at gaging stations	31
	9.	Streamflow data at periodic measurement sites	32
	10.	High-flow characteristics of streams in the study region	48
	11.	Low-flow characteristics of streams in the study region	49
	12.	Estimated low-flow characteristics at period measurement	
		sites	50
	13.	Flood-frequency characteristics at gaging stations having 10	
		or more years of record	52

TABLES

			Page
Table	14.	Estimated flood-frequency characteristics at periodic- measurement sites and gaging stations having less than 10 years of record	53
	15.	Statistics of monthly and annual discharges for gaging stations with 9 or more years of streamflow records	
		available	55
	16.	Estimated monthly and annual average discharges at periodic	
		measurement sites for 1976-77 water years	57
	17.	Baseflow, specific conductance, and water temperature measure-	
		ments in the Copper-Nickel study region, August 23-27, 1976	59
	18.	Measurements of suspended-sediment discharge	63
	19.	Annual and monthly statistics for air and water temperatures	
		in study area	68
	20.	Approximate annual water budgets, in inches, for the Kawishiwi	
		River watershed above Winton and the St. Louis River	
		watershed above Aurora	72
	21.	Water-use datain	back
	22.	Ground-water discharge to hypothetical open-pit mines	80

CONVERSION FACTORS

Multiply inch-pound unit	By	To obtain SI unit
inch (in) foot (ft)	25.4 0.3048	millimeter (mm) meter (m)
mile (mi)	1.609	kilometer (km)
square mile (mi ²) foot per mile (ft/mi)	2.590 0.1894	square kilometer (km ²) meter per kilometer (m/km)
foot per day (ft/d)	0.3048	meter per day (m/d)
gallon per minute (gal/min) gallon per minute per foot	0.06309 0.207	liter per second (L/s) liter per second per meter
[(gal/min)/ft] cubic_foot per second	0.02832	[(L/s)/m] cubig meter per second
(ft ³ /s)	0.02052	(m ³ /s)

National Geodetic Vertical Datum of 1929 (NGVD of 1929).

A geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada, formerly called "mean sea level". The datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts.

HYDROLOGY AND WATER QUALITY OF

THE COPPER-NICKEL STUDY REGION,

NORTHEASTERN MINNESOTA

By Donald I. Siegel and Donald W. Ericson

ABSTRACT

Data were collected on the hydrology of the Copper-Nickel study region, to identify the location and nature of ground-water resources, determine the flow characteristics and general quality of the major streams, and determine the potential effects of mining copper and nickel on the hydrologic system. Ground-water investigations indicate that water generally occurs in local flow systems within surficial deposits and in fractures in the upper few hundred feet of bedrock. Availability of ground water is highly variable. Yields commonly range from only 1 to 5 gallons per minute from wells in surficial materials and bedrock, but can be as much as 1,000 gallons per minute from wells in the sand and gravel aquifer underlying the Embarrass River valley. Except over the mineralized zone, ground water in the surficial deposits is a mixed calcium magnesium bicarbonate type. Ground water over the mineralized zone generally has both a greater percentage of sulfate, compared to bicarbonate, and concentrations of copper and nickel greater than 5 micrograms per liter.

Surface-water investigations indicate that the average annual runoff from streams is about 10 inches. Flow characteristics of streams unregulated by industry are similar, with about 60 percent of the annual runoff occurring during snowmelt in April, May, and June. Flood peaks are reduced in the Kawishiwi River and other streams that have surface storage available in onchannel lakes and wetlands. These lakes and wetlands also trap part of the suspended-sediment load. Specific conductance in streams can exceed 250 micromhos per centimeter at 25° Celsius where mine dewatering supplements natural discharge.

Between 85 and 95 percent of the surface water used is for hydroelectric power generation at Winton and thermo-electric power generation at Colby Lakes. Mine dewatering accounts for about 95 percent of the ground-water used. Estimated ground-water discharge to projected copper-nickel mines ranges from less than 25 to about 2,000 gallons per minute, depending on the location and type of mining activity. The introduction of trace metals from future mining to the ground-water system can be reduced if tailings basins and stockpiles are located on material of low permeability, such as till, peat, or bedrock.

INTRODUCTION

Mining of low-grade copper-nickel ore in the Duluth Complex of northeastern Minnesota has been proposed by mining companies at several sites near the Boundary Waters Canoe Area (BWCA), a Federally designated wilderness area. A regional environmental impact study of the effect of proposed underground and open-pit mines on the associated physical, cultural, and economical aspects of the area is required by the State of Minnesota. As part of the environmental assessment, this report and a companion report on the physiography and surficial geology of the Copper-Nickel study region (Olcott and Siegel, 1978) document the U.S. Geological Survey study during 1975-78 in cooperation with the Minnesota Environmental Quality Board (MEQB), Regional Copper-Nickel Study Staff, and the Minnesota Department of Natural Resources (MDNR).

The Copper-Nickel study region is approximately bisected by the Laurentian Divide between Ely and Hoyt Lakes (fig. 1). It includes 1,400 mi in parts of St. Louis and Lake Counties.

The objectives of this study were to determine the (1) location and extent of aquifers, (2) occurrence and movement of ground water, including the sources of recharge and areas of discharge, (3) chemical quality of the ground water, (4) amount of water available from wells in the various aquifers, (5) surface-water resources and flow characteristics of streams, (6) chemical quality of the surface water, and (7) possible impacts of mining on the hydrologic system.

Together with the companion report describing the surficial geology and physiography (Olcott and Siegel, 1978), this report should provide baseline data necessary for evaluation of hydrologic changes in the event of mining.

METHODS

The geohydrologic information presented was developed from logs of wells and core holes, U.S. Geological Survey topographic maps, field observations, test augering, and the literature. Water samples were collected from Geological Survey and U.S. Forest Service wells and analyzed in the Survey's Central Laboratory for common inorganic constituents, nutrients, selected trace metals, and organic constituents. Other data were obtained from files of the Minnesota Department of Health, the Geological Survey, the Forest Service, and private sources.

In the description of ground-water quality, the significance of differences between mean values of chemical constituents or parameters was evaluated through the use of the T-test at 0.05 level of significance. Hydrologic data collected by the Geological Survey for this study on stream discharge, surface-water quality, and ground-water quality are published in Water Resources Data for Minnesota (U.S. Geological Survey, 1976; 1977; 1978). In addition to the streamflow data network, continuous records of water temperature and specific conductance were collected at Stony River near Babbitt, Dunka River near Babbitt, and Partridge River above Colby Lake at Hoyt Lakes.

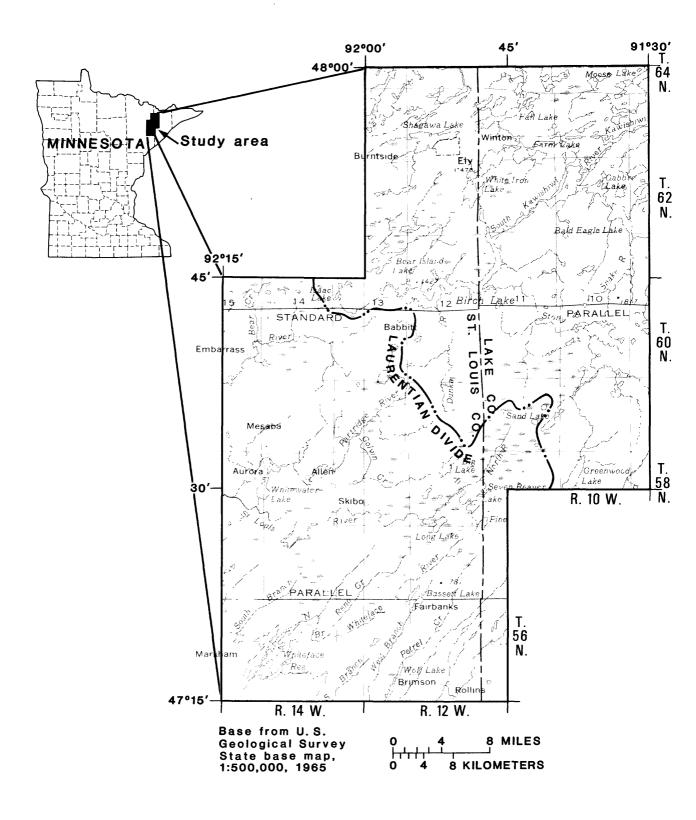


Figure 1.--Location of Copper-Nickel study region

A continuous record of water temperature was obtained at Kawishiwi River near Ely and periodic suspended-sediment samples were collected at Stony River near Babbitt, Dunka River near Babbitt, and Bear Island River near Ely.

Drainage areas for all gaging stations and miscellaneous water-data sites were determined from Geological Survey $7^{1}/2$ - and 15-minute maps. Topographic divides for sites were delineated on maps, and areas were determined by planimetering.

GROUND WATER

Occurrence and Movement

Ground water in unconsolidated surficial deposits generally occurs under unconfined conditions. Artesian to partly confined conditions occur in the southwestern part of the region where clay-rich till of the Des Moines lobe confines the water in the underlying sand and gravel deposits (Maclay, 1966).

Ground water moves slowly from areas of recharge to areas of discharge. The rate of movement is determined by the hydraulic conductivity of material through which it moves and the hydraulic gradient of the water table or potentiometric surface.

Variations in hydraulic conductivities for surficial materials depend on particle-size distribution and degree of stratification. From laboratory experiments, Stark (1977) estimated that hydraulic conductivities ranged from 0.4 to 362 ft/d for 12 samples of sand and gravel and from 0.04 to 6.7 ft/d for 12 samples of Rainy lobe till. For this study, hydraulic conductivities were calculated from particle-size distributions (Krumbein and Monk, 1943) of eight samples of sand and gravel and ranged from 0.004 to 15.5 ft/d. Hydraulic conductivities calculated for four samples of Rainy lobe till ranged from 2.1 x 10^{-5} to 0.13 ft/d.

Results from seven aquifer tests in the sandy drift of the Dunka River basin had hydraulic conductivity values that ranged from 0.6 to 16 ft/d (Erskine, 1975). From these data and other data in Minnesota for comparable sediment types, hydraulic conductivities were estimated for the study area. They range from about 10 to 3,500 ft/d for sand and gravel deposits, 0.01 to about 30 ft/d for till deposited by the Rainy lobe, and 10^{-5} to 10^{-1} ft/d for peat and till deposited by the Des Moines lobe.

The water table in sand, gravel, and till is generally deeper under high areas than under low areas underlain by similar material. Generally, the water table is near or at land surface in topographic lows and wetland areas.

A map of the water table was prepared (plate 1) by use of the assumptions that (1) the water table is a subdued replica of the land surface, (2) lake elevations reflect the water-table elevation, (3) the water table is at the surface in swamps and other wetlands, and at perennial streams, and (4) water levels in the 17 piezometers installed in surficial material generally reflect

water levels in similar materials elsewhere in the study area. It should be noted that this generalized map shows the approximate elevation of the water table in surficial materials and the upper part of the underlying decomposed or fractured bedrock. Contours of the water table will be the least accurate where unfractured bedrock is near land surface.

The approximate hydraulic gradient for surficial aquifers can be determined from the contour map of the water table. Ground-water divides underlie and approximately coincide with topographic highs, and generally delineate local ground-water-flow systems in the drift.

The hydraulic gradients within the physiographic areas (fig. 2), which are defined by Olcott and Siegel (1978), can vary considerably. The largest range of hydraulic gradient is in the Embarrass Mountain-Taconite mining physiographic area, which has both steep topography and a large flat wetland area along the southern margin of the Embarrass Mountains. Gradients may range from 640 ft/mi for short distances at the northeast end of the Embarrass Mountains to less than 5 ft/mi in wetlands.

Gradients in the Drumlin-bog, Shallow bedrock-moraine, and Outwashmoraine complex physiographic areas generally range from 10 to 80 ft/mi, but along the flanks of larger drumlins and topographic ridges gradients can exceed 350 ft/mi for short distances. Gradients in the Seven Beaver-Sand Lake wetland and Aurora-Markham till plain physiographic areas are generally less than 40 ft/mi.

Ground water flows perpendicular to the water-table contours within local flow systems. The lengths of flow paths are generally 1 to 2 miles, from subbasin divides to streams, lakes, and wetlands. The local flow systems are interconnected so that regional ground-water movement is northward from the Laurentian Divide to the Kawishiwi River system and westward and southwestward from the Divide to the St. Louis River.

In the Shallow bedrock-moraine and Outwash-moraine complex physiographic areas, water movement is toward the Stony and Kawishiwi River systems. Movement is generally slow because the till and peat are relatively impermeable and because the flow system in the surficial materials is disrupted by outcrops of relatively impermeable bedrock. Water velocity through sand and gravel beds is greater, but the volume of flow is not great because the saturated thickness is generally less then 10 feet and gradients are low. In the Drumlin-bog and Seven Beaver-Sand Lake physiographic areas, ground-water movement is towards the larger streams and lakes.

Ground water within the Toimi Drumlin field generally moves perpendicular to the NE-SW trend of the drumlins. Movement within wetlands that are interspersed between the drumlins and associated with the Seven Beaver-Sand Lake wetland area follows the southward trends of surface-water drainage.

The aquifers within the sand and gravel deposits that underlie the Embarrass-Dunka Rivers sand plain area have boundaries well delineated by till endmoraines and the Embarrass Mountains. Ground water moves toward the Embarrass and Dunka Rivers.

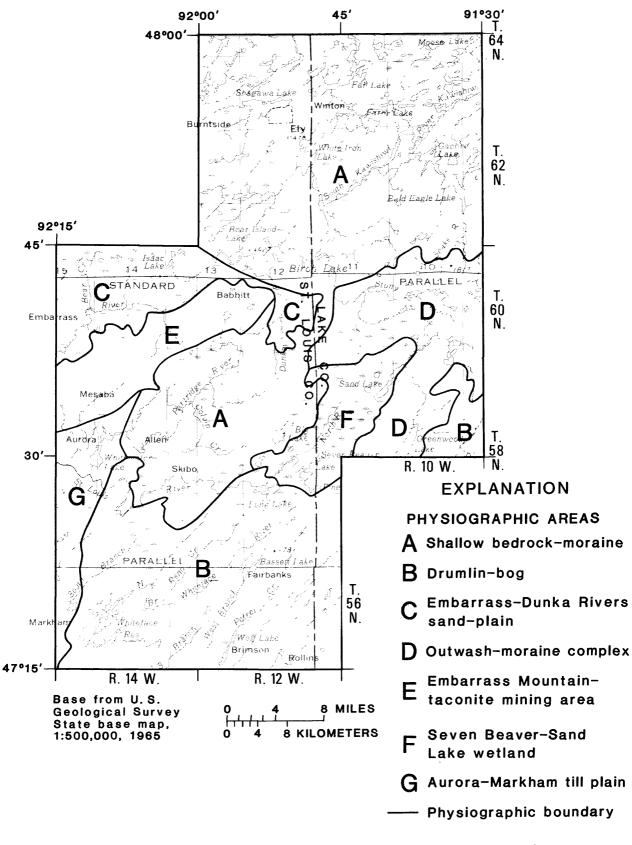
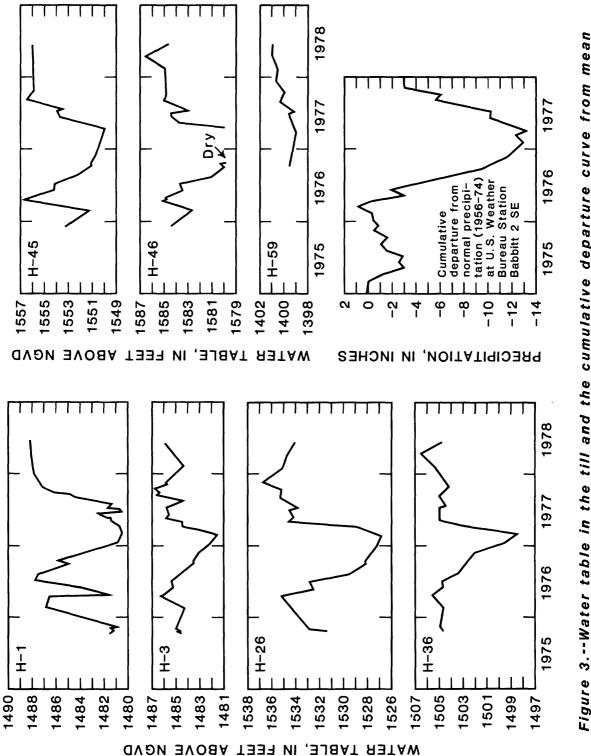


Figure 2.--Physiographic areas of the Copper-Nickel study region

Ground water in the surficial deposits is mostly recharged by precipitation. Infiltration rates are greatest in the Embarrass and Dunka River basins, which are underlain by permeable sand and gravel deposits, and least in the perennially saturated wetland areas.

Recharge to surficial aquifers from underlying bedrock aquifers is insignificant because the major bedrock units are relatively impermeable. In the southern part of the study region near Aurora, however, semiconfined sand and gravel aquifers may locally discharge water to overlying aquifers where confining beds are discontinuous. Seepage from the Whitewater Reservoir at high stage also recharges adjacent sand and gravel aquifers.


Water levels in till and sand and gravel aquifers respond to long-term precipitation trends. Water-table hydrographs (figs. 3 and 4) for observation wells monitored from 1975 through spring 1978 show that the water table fluctuated similarly to but as much as 6 months behind major trends in the cumulative departure from mean monthly precipitation (fig. 5), as recorded at Babbitt between 1956 through 1974. The lag time is roughly dependent upon the depth of the well. The water-table decline during the drought from spring 1976 to summer 1977 averaged about 4 feet for sand and gravel aquifers to about 6 feet for till aquifers.

Water in near-surface bedrock aquifers is under unconfined conditions except where the bedrock is overlain by drift of low permeability. Water in the bedrock occurs in secondary openings such as joints, fractures, and leached zones. The bedrock generally has extremely low primary hydraulic conductivity and yields little or no water unless secondary openings exist. Fractures and joints in the Duluth Complex may extend to considerable depths but are more extensive in the upper 200 to 300 feet of the bedrock. Water occurs in the Biwabik Iron-formation in its area of subcrop, where leaching of oxidized and hydrated taconite minerals has produced extensive secondary porosity up to 50 percent (Cotter and others, 1965).


Near the surface, water in bedrock fractures and joints is hydraulically connected with overlying surficial aquifers, and water movement is coincident with local gradients on the water table. Regionally, ground water probably moves very slowly through deep fractures toward the main drainages. Highly mineralized water in a fracture at a depth of of about 1,400 feet in the Duluth Complex (J. B. Malcolm, written commun., 1976) indicates that water locally may be trapped in small deep-seated fracture systems.

Recharge to the bedrock aquifers is by leakage from overlying surficial aquifers and infiltration of precipitation in outcrop areas.

The extent of ground-water discharge from bedrock aquifers is unknown, but probably is minimal due to the low permeability. Discharge from the Biwabik Iron-formation and surficial aquifers creates small lakes in abandoned open-pit mines in the taconite mining area from Babbitt to south of the study region.

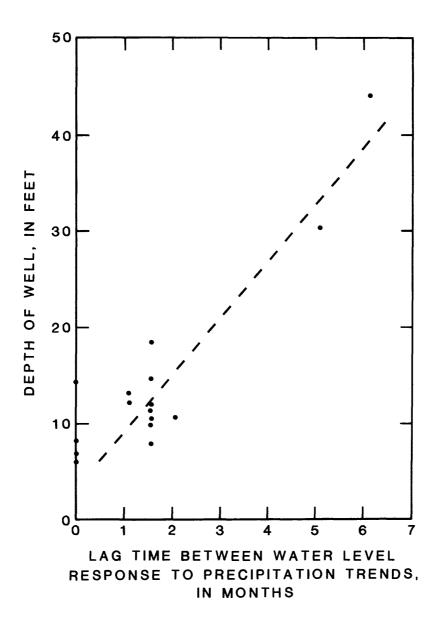


Figure 5.--Relationship between depth of observation well and lag time in water-level response to major trends in cumulative departure from normal precipitation at Babbitt, Minnesota

Information on water-level fluctuations in bedrock wells is scant. Water levels in the bedrock respond similarly to water-table fluctuations where the connection between bedrock and surficial aquifers is good.

Availability

Availability of ground water is highly variable (fig. 6). Yields of 1 to 5 gal/min are obtained over most of the area from shallow dug wells in drift that obtain water from a thin saturated zone at the bedrock surface. Although susceptible to depletion by drought, these supplies are adequate for domestic use most of the time. Similar small supplies are obtained from wells drilled into crystalline bedrock. Sand and gravel deposits, depending on extent and saturated thickness, yield from less than 5 to about 1,000 gal/min. The Biwabik Iron-formation in its area of outcrop also yields as much as 1,000 gal/min to wells. The lithologic and water-bearing character-istics of the geologic units are summarized in table 1.

Ground-water availability by physiographic area is given in table 2.

Specific capacity (well yield per foot of drawdown in water level) of wells is given in tables 3 and 4. The values are an indication of the maximum potential yields of wells. For ideal conditions, doubling the yield of a well will double the drawdown. Specific capacities for wells in sand and gravel deposits range from 0.03 to 38 (gal/min)/ft and in bedrock from 0.02 to 0.11 (gal/min)/ft. Wells in the Biwabik Iron-formation, where fractured and leached, have specific capacities of 0.24 to 6.44 (gal/min)/ft.

Water Quality

Water samples were collected for chemical analysis quarterly during 1976-77 from 12 observation wells finished in glaciofluvial sand and gravel, 11 wells in the Rainy lobe till, and 2 wells in peaty material. In addition, 11 U.S. Forest Service campground wells were sampled during October 1976 when ground-water levels were extremely low. This sampling included 3 wells finished in sand and gravel, 5 wells in Rainy lobe till, and 3 wells in the Duluth Complex. Three other wells in the Duluth Complex were sampled during 1976. Locations of sampled wells and wells which had previously been sampled for water-quality data are given in figure 7.

Water collected from wells in sand and gravel and in peat is a calcium magnesium bicarbonate type, based on predominant ions (fig. 8). This type of water is typical of ground waters which have either a short residence time or have been collected in a recharge zone. Analyses plotted are of samples collected during summer 1976, when ground-water levels were declining in response to drought.

Water collected from the till is classified as either calcium magnesium bicarbonate or calcium magnesium sulfate types. The calcium magnesium sulfate water was collected from wells near the mineralized zone between the Duluth Complex and the Giants Range Granite in the northern part of the study region. Oxidation of sulfide minerals in the till probably causes the increase in the proportion of sulfate relative to other anions.

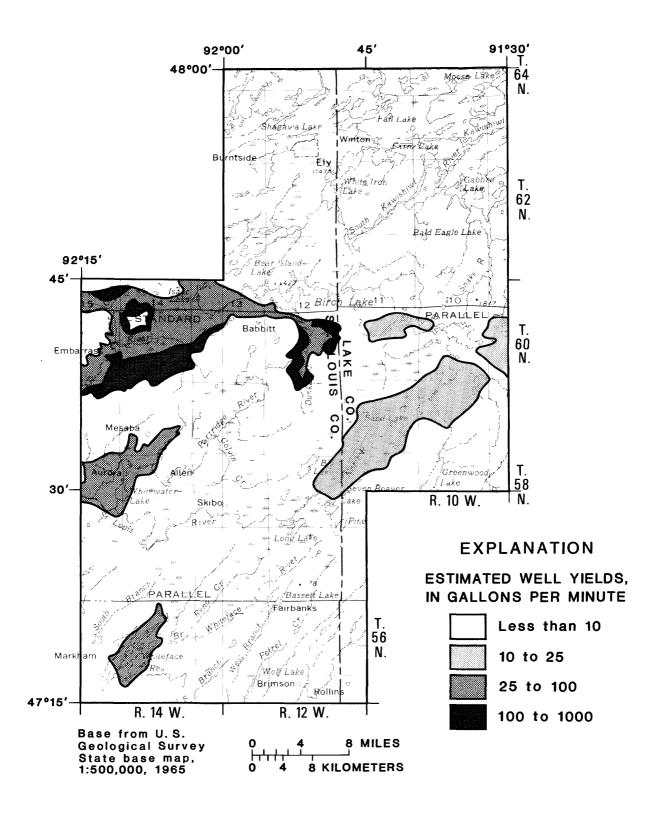


Figure 6.--Estimated average yield of wells in surficial materials

System	Series	Units	Estimated maximum thickness (ft)	Description	Estimated range of hydraulic conductivities (ft/d)	Water supply and water-bearing characterisitics
		Peat deposits	40 <u>+</u>	Peat, locally contains clay, silt, and fine sand	10 ⁻³ to 10 ⁻¹	Not a significant source of water
	Holocene	Alluvial deposits	20 <u>+</u>	Fine to medium sand, some silt and gravel. Unit lies in flood plains of the Embarrass and Dunka Rivers.	10 ¹ to 10 ^{3.5}	Not a significant source of water
		Red Clay till of Des Moines lobe	50 <u>+</u>	Till, red to brown, clayey; generally contains small basaltic pebbles; locally bouldery; leached to light- er tone in upper 1 foot. Unit caps much of the up- lands of the Aurora area.	10 ⁻² to 10 ⁻⁵	Not a significant source of water
Qu aternary	Pleistocene (Wisconsin)	Glaciofluvial deposits	300 <u>+</u>	Sand, gravel, and silt. Unit thinly capped in some places by red clay till but locally exposed along chan- nels. Terrace deposits are largely sand but include some kame deposits composed	10 ¹ to 10 ^{3.5}	Sand and gravel depos- its are major sources of water. Channel and kame deposits are prob- ably the most produc- tive aquifers.
				predominantly of fine to medium sand. Esker deposits composed largely of poorly sorted sand, gravel, and boulders. Channel deposits of sand, fine to coarse gravel, clay, and silt.	3	Yields to wells range from less than 5 gal/min from silty sand to as much as 1,000 gal/min from coarse gravel.
		Bouldery till of Rainy lobe	100 <u>+</u>	Till, sandy, bouldery, gray. Gravel and boulders are largely composed of gabbro, granite, and other associated igneous rocks.	10 ⁻¹ to 10 ^{1.5}	Not a major source of water; however, locally yields 5-10 gal/min to domestic wells.
		Duluth Complex	(?)	Largely troctolite.		May yield 5-15 gal/min from fractured zones _near its upper surface.
		Virginia Argillite	2000 <u>+</u>	Thinly bedded, gray to black argillite.		May yield up to 30 gal/min from fractured zones near upper sur- face. Utilized for many domestic supplies.
Proterozoic		Biwabik Iron- formation	800 <u>+</u>	Taconitedark colored hard dense iron-bearing silicate rock. Oreblack, yellow, or red, soft iron-bearing porous rock.		May yield up to 1,000 gal/min to wells in highly fractured taco- nite and ore. Utilized for many municipal and industrial supplies.
		Pokegama Quartzite	350 <u>+</u>	Varicolored vitreous quartzite.		May yield 5-15 gal/min from fractures zones near its upper surface.
Archean		Giants Range Granite	(?)	Largely granodiorite.		May yield 5-15 gal/min from fractured zones near its upper surface.

Table 1.---Geologic units and their lithologic and water-bearing characterisitics

Physiographic area	Water-bearing units	General aquifer thickness, in feet	Estimated potential yields to wells, in gallons per minute
Shallow bedrock- moraine area	Till on fractured bedrock	Less than 10 feet of till; up to 100 feet of bedrock	Less than 10
Drumlin-bog area	Till, discontinuous lenses of sand and gravel within till	Less than 50	Less than 10
Embarrass—Dunka Rivers sand plain area	Sand and gravel	Less than 50 to $1,000+$	Less than 10 to 1,000
Outwash-moraine complex area	Till, sand and gravel lenses	Less than 25	Less than 25
Seven Beaver-Sand Lake wetland area	Till, sand and gravel lenses	Less than 25	Less than 25
Aurora-Markham till plain area	Sand and gravel	Less than 50 to 100	Less than 10 to 300
Embarrass Mountains taconite mining area	Biwabik-Iron- formation	800+	100 to 1,000

Table 2.--Ground-water availability by physiographic area

Well locations	Well depth (feet)	diameter (inches)	Pumping period (hours)	Specific capacity [(gal/min)/ft]
56–14–17cda 56–14–17cdc 56–14–20bab 57–12–31baa 57–14–8ba	90 80 35 70 37	6 6 6 6	8 8 8 8 8	0.19 .03 1.88 .05 .32
57–15–22cdb 58–15–3bcc 58–15–3bcc 58–15–4dba 59–10–18adb	80 70 70 35 48	4 6 6 6	24 3 10 0.5 6	•57 25 23 7•1 •14
59–15–31dac 60–9–18aab 60–9–27bac 60–9–27cac 60–10–21bbb	64 23 78 30 49	18 7 6 6 6	1 week 8 8 8 8 8	18 11 .25 10 7.5
60–10–36dab 60–12–5baa2 60–13–1bab1 60–13–1bab3 60–13–1bab4	28 13 138 128 157	6 12 26 12 16	8 4 8 8 11.5	18 4.0 38 13 5.9
60–13–1bba 61–14–2db 61–14–4cca 63–11–31aac 63–13–27acc	67 40 98 16 70	24 20 20 24 6	10 4 4 1 12	19 30 13 10 1.0

Table 3.--Specific capacities of selected wells in sand and gravel aquifers

Water-bearing unit	Well location	Pumping period, in hours	Depth, in feet	Specific capacity, in (gal/min)/ft
Biwabik Iron- formation	58-15-3cca2	6	455	3.0
	59-15-26dbc	24	299	0.24
	59-15-26dbc	45	398	•25
	60-12-17aad	20	110	6.55
Giants Range Granite	59-14-2adc	8	197	.03
Duluth Complex	61-11-19bdc	4	125	.11
	61-11-34bbc	4	225	.02

Table 4.--Specific capacities of selected wells in bedrock aquifers

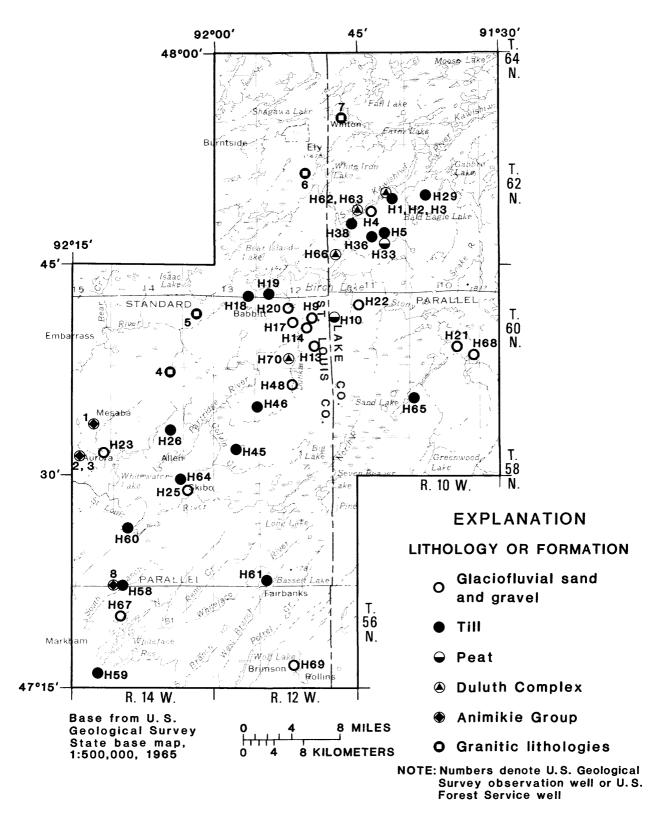
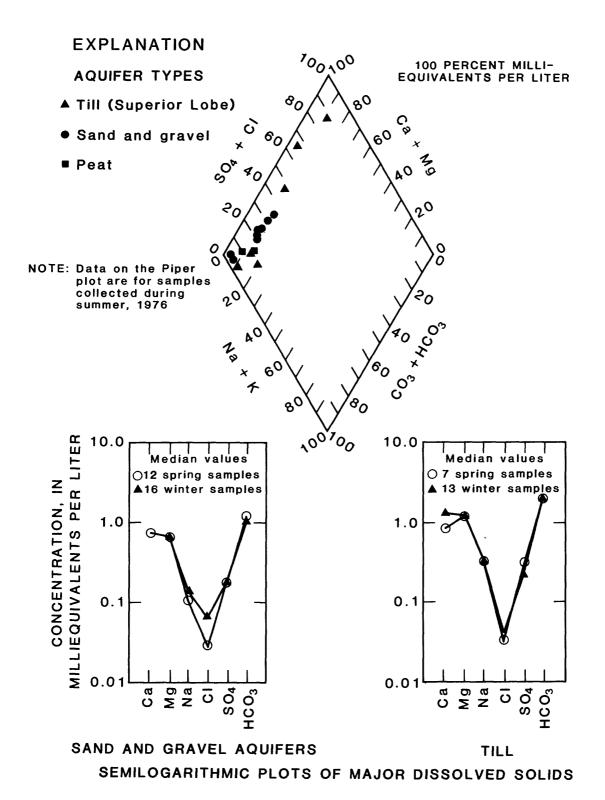



Figure 7.--Wells sampled for chemical analysis

N

Figure 8.--Piper plot and semilogarithmic graphs of ground-water

quality in surficial materials

Semilogarithmic plots of water quality (fig. 8) show the chemical similarity between water in sand and gravel and till, and between samples collected during both spring and winter. Median concentrations were chosen so that the plots would not be biased with extreme values. The similarity off the semilogarithmic curves indicates that water-quality differences in the surficial aquifers are more a matter of relative concentrations than of differences in the proportions of specific ions. Dilution by spring recharge, most apparent in water sampled from sand and gravel, is reflected by the shift of the curves toward the axes of the graphs.

The concentration differences in major constituents can be related to differences in the sedimentologic and hydrologic characteristics between the till and sand and gravel. Silt and finer-sized particles in the till have large surface area to volume ratios, which places large areas of minerals in contact with the water and enhances chemical reactions. In addition, the time available for chemical reactions is greater in the till, where water movement is slow because of low hydraulic conductivity.

Water in sand and gravel is classified (Hem, 1975) as moderately hard to hard. Water in the till is moderately hard to very hard.

Summary statistics for major dissolved constituents and other properties in ground water from surficial materials are presented in table 5. Order of magnitude ranges in the data reflect the diversity of local hydrochemical conditions.

With the exception of chloride, mean values of major dissolved constituents are significantly higher for water from till than from sand and gravel. Mean and median concentrations of the major ions, specific conductivity, and hardness in water from till are about twice that found in sand and gravel. Mean concentrations of dissolved nitrite and nitrate, dissolved phosphorous, total organic carbon, silica, and chemical oxygen demand in water from sand and gravel and till are not significantly different.

Summary statistics for selected minor and trace metals in ground water from surficial materials are given in table 6.

Concentrations of copper, cobalt, and nickel generally are less than 30 ug/L but can exceed 100 ug/L in surficial material directly over the mineralized zone. The occurrence of these metals is probably related to the oxidation of sulfide ores at the contact zone and in the nearby glacial deposits.

The areal distribution of copper and nickel concentrations in water from surficial aquifers reflects proximity to the mineralized contact zone between the Duluth Complex and older rocks (figs. 9 and 10). Consistently higher concentrations of both copper and nickel occur in zones 5 to 10 miles wide centered on the contact.

Concentrations of chromium, cadmium, and lead range from 0 to 15 mg/L.

Table 5.--Quality of ground water from surficial materials, 1976

ĺ

[Concentrations in milligrams per liter except where designated otherwise]

		Samples from till	from ti	1			Samples f	rom sand	Samples from sand and gravel	6
Constituent or property	Number of samples	Maxi- mum	Mini- mum	Mean	Median	Number of samples	Maxi- mum	-inin mum	Mean	Median
Specific conductance (micromhos) pH Chemical oxygen demand Hardness (Ca, Mg)	30 10 30 30	1250 8.0 870 637	120 5.7 22 37	368 6.81 198 173	251 6.70 51 104	40 1880 1880	577 7.1 500 284	26 26 26	193 6.33 93 93	166 6.35 18 71
Dissolved calcium Dissolved magnesium Dissolved sodium Dissolved potassium	格요요엄	150 64 18 9.3	00000	39 18 2.7	22 14 6.9 2.1	41 41 41 41	76 31 7.3 3.0	0.0 1.4 0.2	20 3.1 1.3	16 7.3 2.9 1.1
Bicarbonate Dissolved sulfide Sulfate Chloride	33 I 1 30	423 12 450 35	45 0 1.8 0.4	145 1.5 61	120 0.4 11 1.4	17 17 400	392 4 35 18	15 0 0.1	95 0.9 4	69 0.6 2.2
Silica	13	37	13	20	18	21	28	10	19	18
Ditus (restuue au 180°F) Nitrate plus nitrite Total phosphorus	13 13 13	938 12 0.07	97 0 0	293 1.5 0.006	187 0.4 0.001	14 37 21	284 10 0.04	55 0.01 0	148 2.2 0.003	130 0.62 0.001
Dissolved organic carbon	- 22	46	2.1	18	13	33	52	0.7	11	6.4

		1111	Till aquifers	ß			Sand and gravel aquifers	avel aqu	uifers	
M Constituent	Number of samples	Maxi- mum	Mini- mum	Mean	Median	Number of samples	Maxi- mum	Mini- mum	Mean	Median
Cadmium	29	8.4	0	0.8	0•3	30	1.2	0	0.3	0.3
Cobalt	30	28	0.3	3•5	1.4	30	9†	0.1	6.3	0.7
Chromium	30	5.5	0	0.9	0.6	31	3.2	0	0.6	0.5
Copper	30	190 ^a	0.6	12	3 . 8	30	45	0.2	7.2	4.2
Lead	30	6.4	0.1	1.8	1.3	31	18	0	1.9	1.1
Nickel	27	120	1.0	15	0.6	29	40	0.7	7.5	5.0
AluminumA	24	200	0	20	20	30	280	0	32	29
Zinc	30	170	3.9	28	6.8	30	620	0.7	56	14
•	30	3100	0	221	25	38	67,000	0	5152	45
Manganese	31	7190	10	1268	330	38	26,000	0	2140	45

Table 6.--Summary statistics of selected dissolved trace and minor metals in water from surficial materials

21

^aMay reflect contamination.

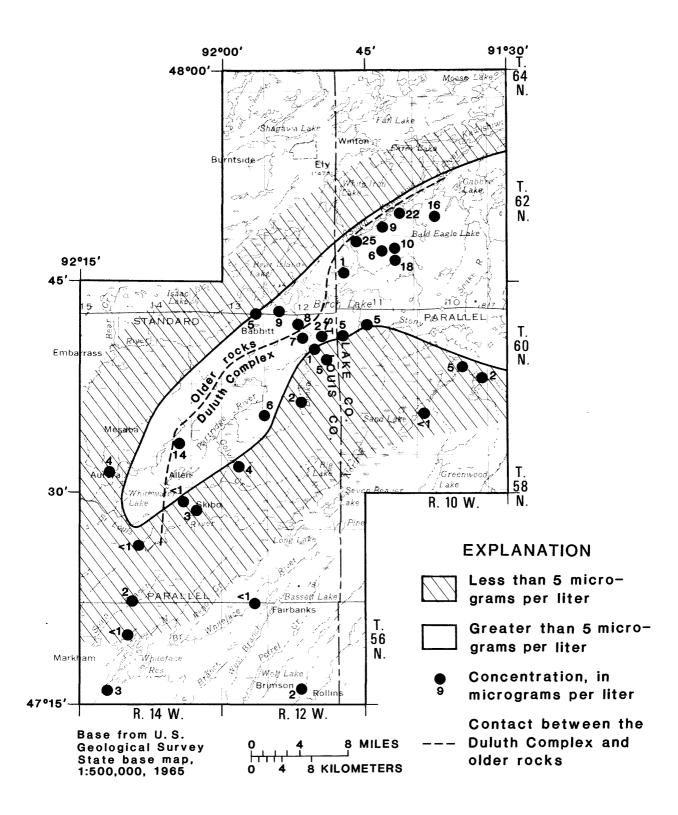


Figure 9.--Generalized copper distribution in ground water from surficial materials (data from October or April, 1976)

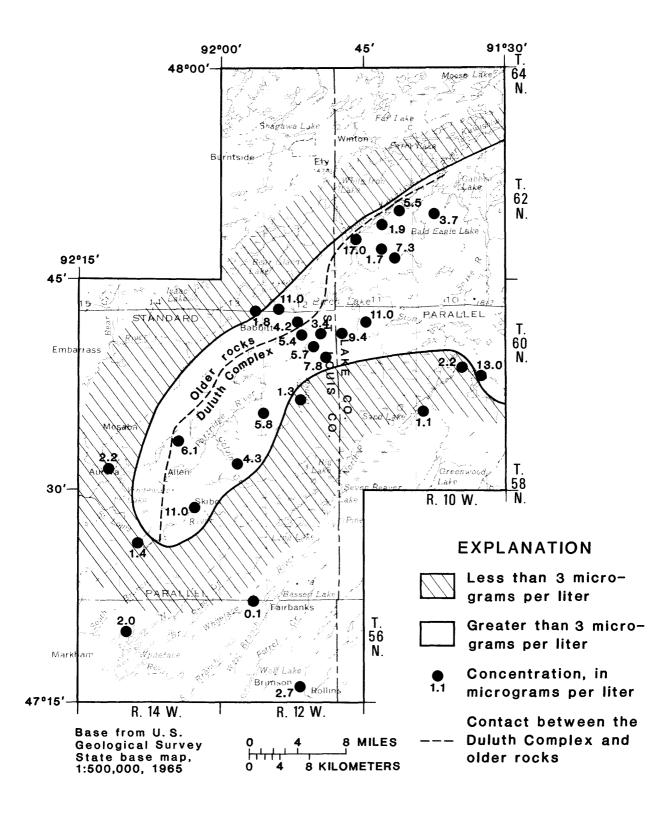


Figure 10.--Generalized nickel distribution in ground water from surficial materials (data from October or April, 1976)

Iron is occasionally found in anomalously high concentrations--up to 67 mg/L. These concentrations of iron are difficult to explain with the scant data base, but probably are related to reducing conditions in the system.

Representative analyses of water samples collected from wells in the major bedrock units are given in table 7.

Concentrations of major constituents in water from the Duluth Complex are highly variable. Specific conductance ranges from 220 to 4,620 umho/cm at 25°C, while chloride concentration ranges from 1.3 to 1,500 mg/L. Field pH in water from the Duluth Complex ranges from 7.0 to 8.5, which is generally one pH unit more basic than water from the surficial deposits. Because water in the Duluth Complex occurs in isolated fractures and joints, water quality is probably a function of local hydrogeochemical conditions. However, data from six wells suggests that concentrations increase with depth.

Water from the Duluth Complex can be classified as a sodium chloride or sodium bicarbonate type (fig. 11).

Water in granite, Biwabik Iron-formation, and Virginia Argillite (figs. 11 and 12) is a calcium magnesium bicarbonate type, similar to water from surficial materials.

Except for iron and manganese, few analyses have been made for trace and minor metals in water from the bedrock aquifers. The few analyses available suggest that dissolved copper, nickel, cadmium, silver, mercury, and lead concentrations are low, generally less than a few micrograms per liter, in water from most bedrock.

Iron and manganese concentrations in water from wells in the Duluth Complex range from 0 to 150 and 0 to 60 ug/L, respectively. Concentrations of these metals are higher in water from wells in the Biwabik Iron-formation, ranging from 50 to about 5,000 ug/L for iron and from 0 to 1,800 ug/L for manganese. Data from four wells indicate that concentrations of iron and manganese in water from the Giants Range Granite are as high as 500 ug/L.

Specific conductance is correlated with dissolved calcium, hardness (Ca + Mg), and dissolved solids, as shown in figure 13. From these correlations, specific conductance can be used to estimate the concentrations of these constituents in ground water.

SURFACE WATER

General Description

The 1,400 mi² study area is within the drainage basins of the Kawishiwi and St. Louis Rivers (fig. 14), which are separated by the Laurentian Divide. North of the divide, water in the Kawishiwi and Shagawa Rivers flows through Rainy Lake and Lake of the Woods to Hudson Bay. South of the divide, water in the St. Louis River flows to Lake Superior and eventually to the Atlantic Ocean. Table 7.--Representative ground-water analyses from major bedrock types in the Copper-Nickel study region

[BBKF = Biwabik Iron-formation, DCPX = Duluth Complex, GRNT = Giants Range Granite or other granite, VRGN Virginia Argillite; concentrations in milligrams per liter except where designated otherwise]

Dis- bis- solved solids (sum of con- stit- uents)			180	323	436
Dis- solved silica (SIO ₂)		18 17		14	19
Dis- solved chlor- ide (C1)	5.3 310 4.3	1500 9 12	1.4 7.8 1.0	1.5	1.3
Dis- solved sul- fate (SO ₄)	3.8 45 9.6	3.6 41 17	47 88 17	7.3 65 13.8	22
Bi- car- bo- nate (MC 03)	167 155 115	94 189 71	99 32 207	140 71 204	523
Dis- solved potas- sium (K)	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0.63 0.63 0.83	70.8	1.9 0.9 2.6	4.2
Dis- solved sodium (Na)	73 220 48	470 5 4.6	20 7.3	13.0 4.6 26	19
Dis- solved mag- nes- ium (Mg)	0.1 0.0 0	25-0 22-0	52	9.1 6.0 10	66
Dis- solved cal- cium (Ca)	2.7 44 3.1	420 43 19	58 42 93	31 19 110	46
Total hard- ness (Ca, Mg)	7 150 9	1100 200 110	130 94	63 93	390
풘		8.1 7.4 7.1		8.3	7.8
Spe- cific con- duct- tance (micro- mhos)	320 1300 220	4620 380 298	240	143 572 237	745
Date of (sample	10-20-76 10-29-76 10-10-76	-15-77 - 4-74 - 8-72	65 70 - 8-75	- 5-74 - 8-72 -12-72	
	225 10- 1000 10- 125 10-	46 12-1 98 12- 17 0- 8	180 10- 10- 197 8-	425 12- 5 147 9- 8 121 9-12	90 12-
Depth of fer (ft)		(1046 7 398 147			
	DCPX DCPX DCPX	DCPX BBKF BBKF	BBKF BBKF GRNT	GRNT GRNT GRNT	VRGN
Source of Anal- ysis	NSGS USGS USGS	AMAX USGS USGS	hoasm Hoasm	SĐSN NSGS SDSN	USGS
Well number	62.11.33da 62.11.33ac 61.11.19bd	60.12.32aa 59.15.26dcb 62.12.14dbd	58.15.3bcc2 58.15.3caa 59.14.2ad	60.13.7abc 62.12.14dbd 63.11.17ccc	56 .14. 6bba

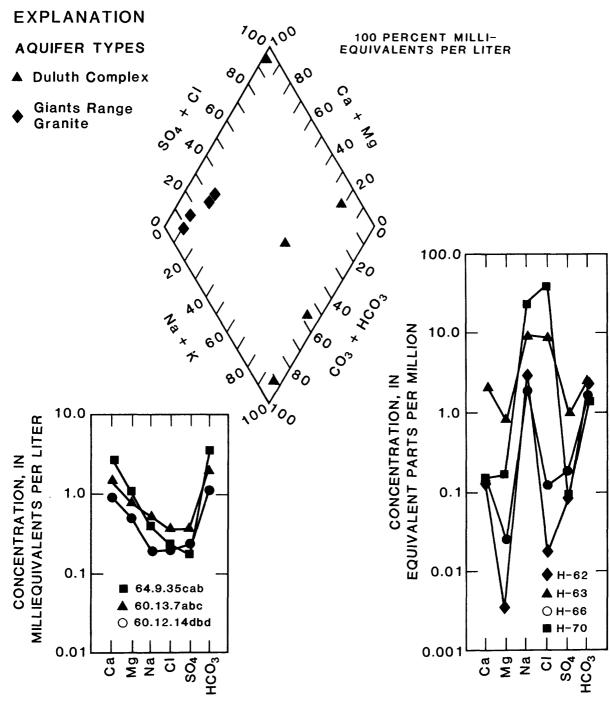


Figure 11.--Piper plot and semilogarithmic graphs of ground-water `quality in the Duluth Complex and Giants Range Granite

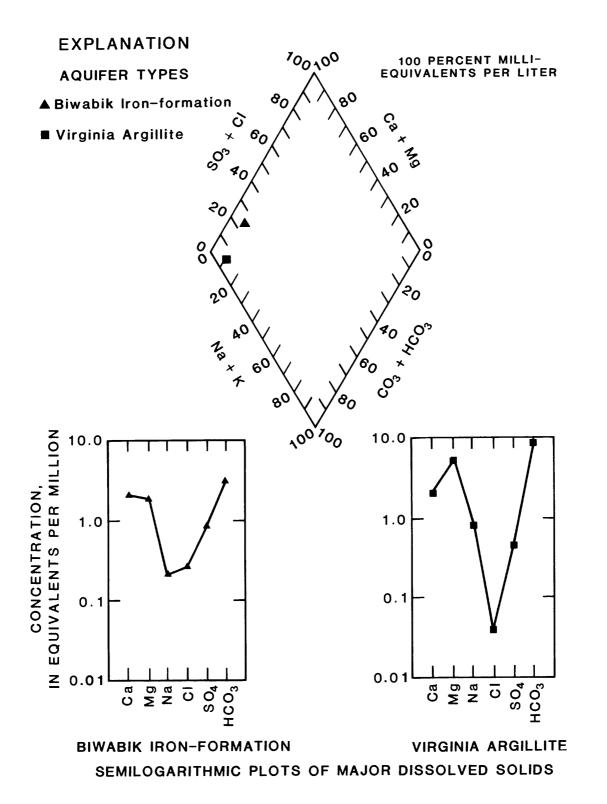
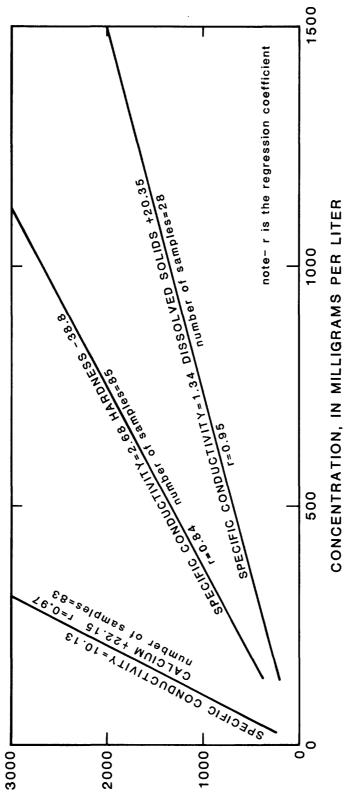



Figure 12.--Piper plot and semilogarithmic graphs of ground-water quality in the Biwabik Iron-formation and the Virginia Argillite

Figure 13.--Relationship between specific conductance and selected constituents in ground water collected from the Copper-Nickel study area

SPECIFIC CONDUCTIVITY, IN MMHOS

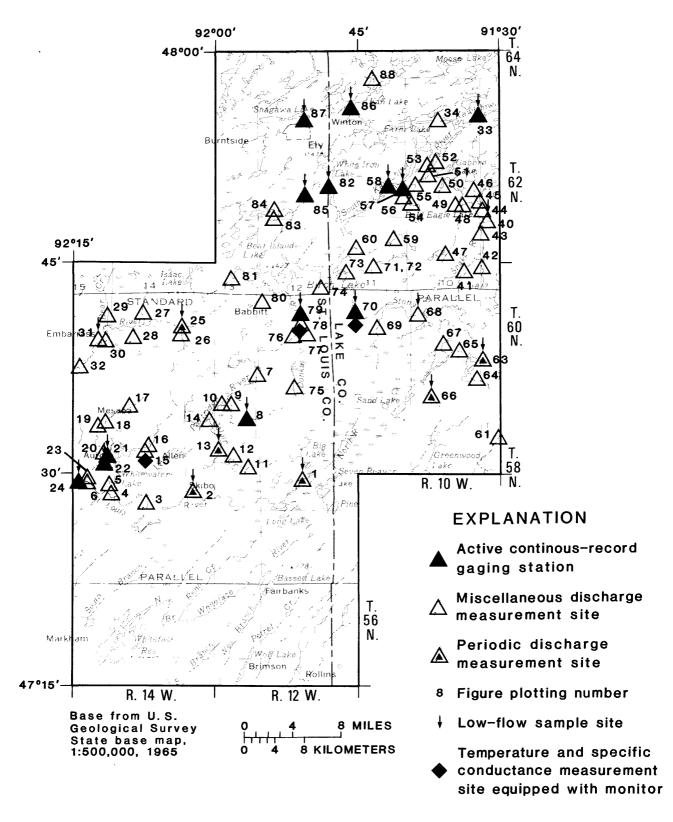


Figure 14.--Map showing location of surface-water data stations including low-flow sample sites

Major tributaries to the Kawishiwi River are the Stony and Isabella Rivers, both flowing generally from east to west to Gabbro and Birch Lakes, respectively. Major tributaries to the St. Louis River are the Embarrass and Partridge Rivers, which also flow generally from east to west. Both basins have a high density of lakes and wetlands that are connected by streams. For example, more than 33 miles of the Kawishiwi River is composed of on-channel lakes, about 40 percent of the total river length. The St. Louis River basin has a high density of wetlands, ranging from a few acres to several square miles in area.

Drainage areas for all gaging stations and miscellaneous water-data sites are given in tables 8 and 9.

Channel profiles (figs. 15a, b, c, and d) illustrate variations in river gradients caused by on-channel lakes and wetlands. For example, although the average gradient of the Kawishiwi River is 4.3 ft/mi, the central part of its profile has a gradient of only 2.5 ft/mi because of on-channel lakes.

Stony and Isabella Rivers have similar channel profiles. Average gradients are 11.4 ft/mi for the Stony River and 10.1 ft/mi for the Isabella River.

The St. Louis River has an average gradient of 7.9 ft/mi from its headwater to near Aurora. Where lakes and wetlands occur in its headwater, the channel gradient is only 1.6 ft/mi. The step like pattern in the profile of the Partridge River is caused by Colby Lake.

The segment of the Embarrass River located in the study area has an average gradient of 3.7 ft/mi. The tributaries to the Kawishiwi River, Filson Creek, Dunka River, and Bear Island River have average gradients of 16.2, 15.9, and 7.4 ft/mi, respectively.

The Kawishiwi River is regulated a few hundred feet upstream from its mouth at Fall Lake by a hydroelectric powerplant dam. The powerplant dam creates a reservoir pool that extends upstream to include Garden, Farm, and South Farm Lakes. Backwater from the reservoir pool provides additional storage in White Iron Lake. A second reservoir is located on South Kawishiwi River at Birch Lake. Flow from this reservoir is controlled by a dam at the Birch Lake outlet. Flow at the powerplant is completely regulated up to the maximum discharge capacity of the turbines, which is just under 1,000 ft³/s. During periods of high runoff, excess flow at the powerplant is discharged through a spillway.

The Partridge River is mostly regulated at Colby Lake, where water is appropriated for iron-ore processing and for cooling at a thermoelectric powerplant. Partridge Reservoir, constructed in 1955, stores water during periods of high runoff, which is later released to Colby Lake when flow in the Partridge River is not adequate for maintaining the elevation of the lake. Water from Partridge Reservoir seeps to the Partridge and St. Louis Rivers. Seepage varies with stage in the reservoir.

ting	- Station	Station name	Drainage area (mi ²)	Period of record	Maxi disch Date	mum arge (ft ³ /s)		imum harge (ft ³ /s)	Years of record	Average dis- charge (ft ³ /s)	annual runoff
8	04015455	South Branch Partridge River near Babbitt	18.5	June 1977- present	9–26–77	a82		No flow at times	<1	******	
21	04015500	Second Creek near Aurora	29.0 nc6.6	Mar. 1955- present	4-22-61	254	10-17-76	1.2	22	22.4	
22	04016000	Partridge River near Aurora	161 nc13	Aug. 1942- present	5-10-50	3230	1-30-61 1-31-61	2.2	35 ·	* 126	*10.83
24	04016500	St. Louis River near Aurora	290 nc13	Aug. 1942- present	5-14-50	5380	10- 1-40 Jan. 29- Feb. 10, 1977	4.0	35	*244	*11.51
30	04017000	Embarrass River at Embarrass	88.3	Aug. 1942- Dec. 1964	5- 8-50	1740	Jan. 28- Feb. 5, 1963	0.90	22	64.4	9.90
33	05124480	Kawishiwi River near Ely	253	June 1966- present	4-24-76	1720	Jan. 31 Feb. 1, 2, 1977	4.5	11	223	11.97
40	05124500	Isabella River near Isabella	341	Oct. 1952- Sept. 1961, Apr. 1976- Nov. 1977	4–19–76	3900	Aug. 21, 22, 1961, Sept. 11- 13, 1976	24	10	272	10.83
57	05124990	Filson Creek near Elv	9.66	Oct. 1974- present	4-25-75	129		No flow at times	3	6.17	8.67
58	05125000	South Kawishiwi River near Ely		Oct. 1951- Sept. 1961, Apr. 1976- present	5- 4-54	5130	Oct. 12, 1960	25	11	419	
68	05125500	Stony River near Isabella	180	Oct. 1952- Dec. 1964	4-27-57	ъ2040	Aug. 22, 1961	5.6	12	127	9.58
70	05125550	Stony River near Babbitt	210	Aug. 1975- present	4-19-76	2490	Nov. 29, 1976	6.4	2	136	8.43
79	05126000	Dunka River near Babbitt	53.4 nc4	Oct. 1951- Sept. 1962, Feb. 1975- present	4–16–54	691		No flow at times	13	36.6	9.29
82	05126210	South Kawishiwi River above White Iron Lake near Ely		Aug. 1975- present	4-22-76	8080	Mar. 22, 1977	19	2	608	
85	05126500	Bear Island River near Ely	68.3	Oct. 1952- Sept. 1962, Mar. 1975- Sept. 1977	5- 3-54	423		No flow at times	12	41.2	8.17
86	05127000	Kawishiwi River near Winton	1229	June 1905- June 1907, Oct. 1912, Sept. 1919, Sept. 1923-	5–18–50	16,000		No flow at times	58	1019	11.26
87	05127230	Shagawa River at Ely	99	present May 1967- present	6-12-70	640	Nov. 11, 1976	0.17	10	86.6	11.88

Table 8.--Streamflow data at gaging stations

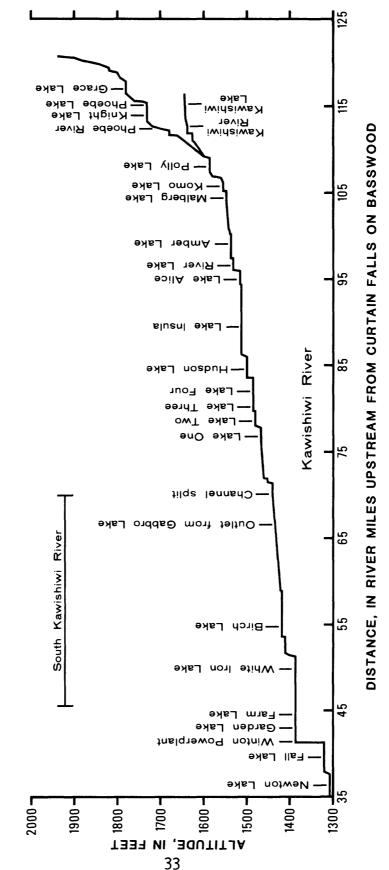
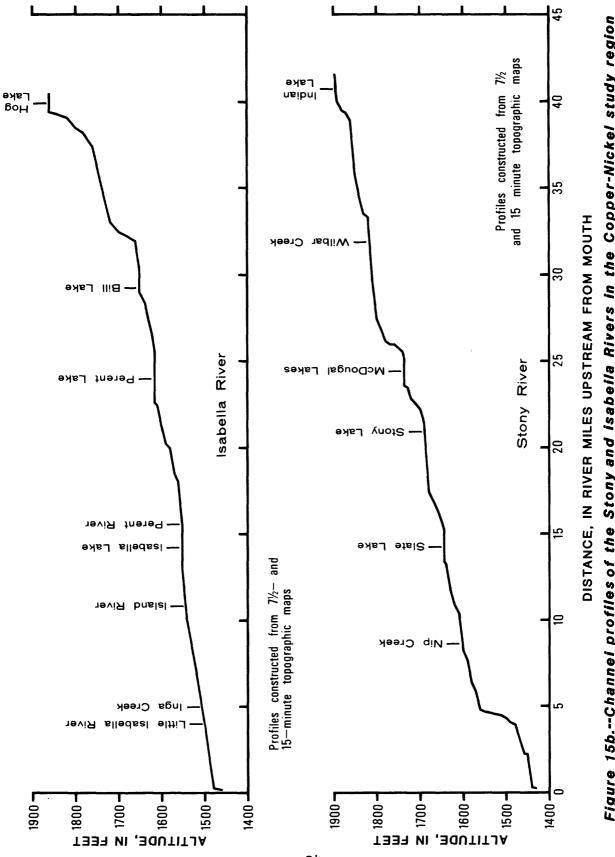

a - 148 ft³/s measured April 12, 1976.
b - 2,260 ft³/s measured April 20, 1976.
* - Adjusted for storage and diversion from Colby Lake.
nc - Noncontributing drainage area with respect to surface runoff.

Figure plotting number	Station I.D. number	Station name	Drainage area (mi ²)	Period of discharge measurements	Range of discharge (ft ³ /s) maximum minimum	Range of discharge (ft ³ /s) hmum minimum
	04015430	St. Louis River below Seven Beaver Lake near Fairbanks	60.6	July 1976-Oct. 1977	185	0.19
2	04015438	St. Louis River near Skibo	64	July 1976-Oct. 1977	238	0.22
æ	04015455	South Branch Partridge River near Babbitt	18.5	Dec. 1975-June 1977 ^a	148	0
13	04015461	Colvin Creek near Hoyt Lakes	18.3	Dec. 1975-Oct. 1977	136	0.25
25	04016900	Embarrass River near Babbitt	17.6	Dec. 1975-Oct. 1977	124	0
30	04017000	Embarrass River at Embarrass	88.3	Aug. 1975-Oct. 1977 ^b	644	1.39
63	05125400	Stony River near Murphy City	62	Dec. 1975-Aug. 1977	1100	0.94
66	05125450	Greenwood River near Isabella	48.2	Jan. 1976-Aug. 1977	686	0
68	05125500	Stony River near Isabella	180	Aug. 1975-Oct. 1977 ^b	2260	4.93

Table 9.--Streamflow data at periodic measurement sites


١

^aConverted to continuous record gaging station June 1977. ^bAt discontinued gaging station.

Profile constructed from $7/_2$ and 15-minute topographic maps

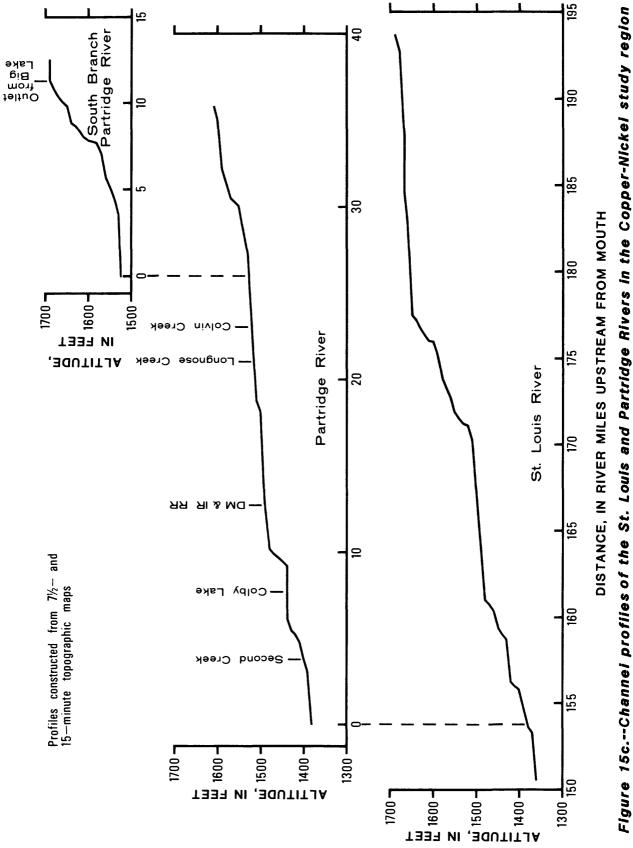
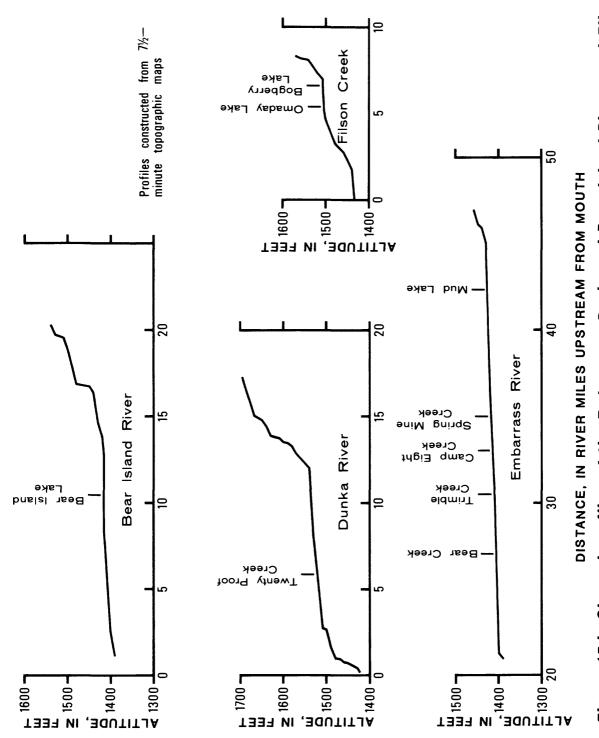



Figure 15d.--Channei profiles of the Embarrass, Dunka and Bear island Rivers and Filson DISTANCE, IN RIVER MILES UPSTREAM FROM MOUTH Creek in the Copper-Nickei study region

The Kawishiwi River, Partridge River, and Second Creek are partly regulated by industry. Second Creek is mostly affected by dewatering of open-pit mines, which by 1969 increased the discharge by several cubic feet per second. Water is also appropriated from Second Creek for industrial use at a rate several times less than that added by mine-dewatering.

Flow Characteristics

Both seasonal variations in flow and effects of regulation are illustrated in annual hydrographs of the South Kawishiwi, Partridge, Embarrass, and Stony Rivers (figs. 16 and 17) for years when annual runoff was below, near, and above normal. The hydrographs show that streamflow generally recedes slowly in late fall and through the winter, rises sharply during spring snowmelt, and again recedes during the summer, except during occasionally heavy storms.

Baseflow is small during the winter because ground-water discharge is minimal. The largest aquifer in the study area is located in the Embarrass River basin but baseflow is not sustained at a very high rate, even in wet years.

Flood peaks of the Kawishiwi River near Ely are reduced because large volumes of runoff are stored in on-channel lakes. The lakes later release the stored water to sustain relatively high flows on the descending limb of flood peaks.

Mine discharge supplements baseflow to the Partridge River. Consequently, baseflow during the dry 1976 water year was near normal.

Continuous long-term hydrographs (fig. 18) illustrate the effect of regulation. Compared to the unregulated Embarrass River, baseflow of Second Creek and Partridge River increased as a result of mine-dewatering after 1964. Because of hydroelectric regulation, the range of annual discharge of the Kawishiwi River is about equal to that of the Stony River, even though the Kawishiwi River has a drainage area about ten times greater.

Another way of illustrating streamflow is by use of flow-duration curves. Flow-duration curves are cumulative frequency curves that show the percentage of time specified discharges are equalled or exceeded during a given time period, independent of sequence of occurrence.

Flow-duration curves for major streams are plotted with the ordinate expressed both as daily mean discharge (figs. 19 and 20), and as daily flow per square mile in figures 21 and 22. The lowest unit flows for durations exceeding 90 percent are at Dunka River near Babbitt and Shagawa River at Ely. The highest unit flows are at the Isabella River near Isabella and Stony River near Isabella.

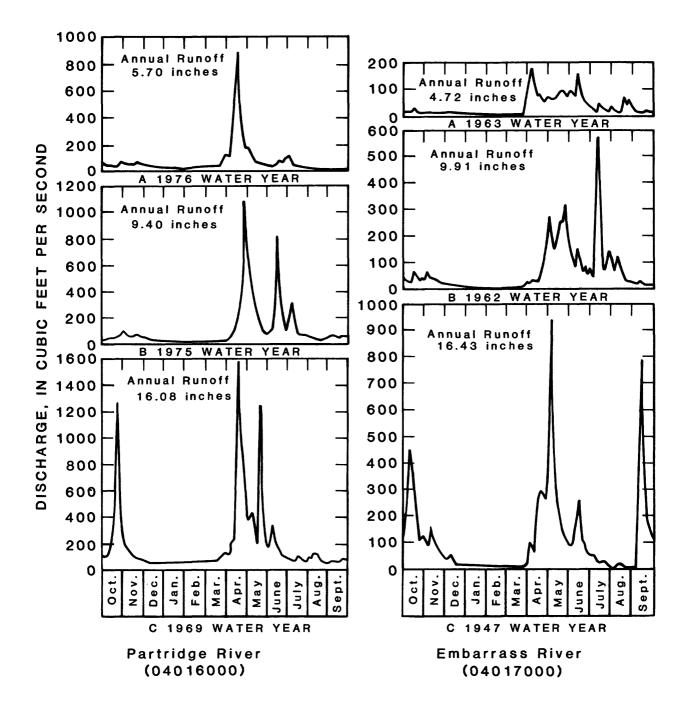


Figure 16.--Annual hydrographs of streams in the St. Louis River basin

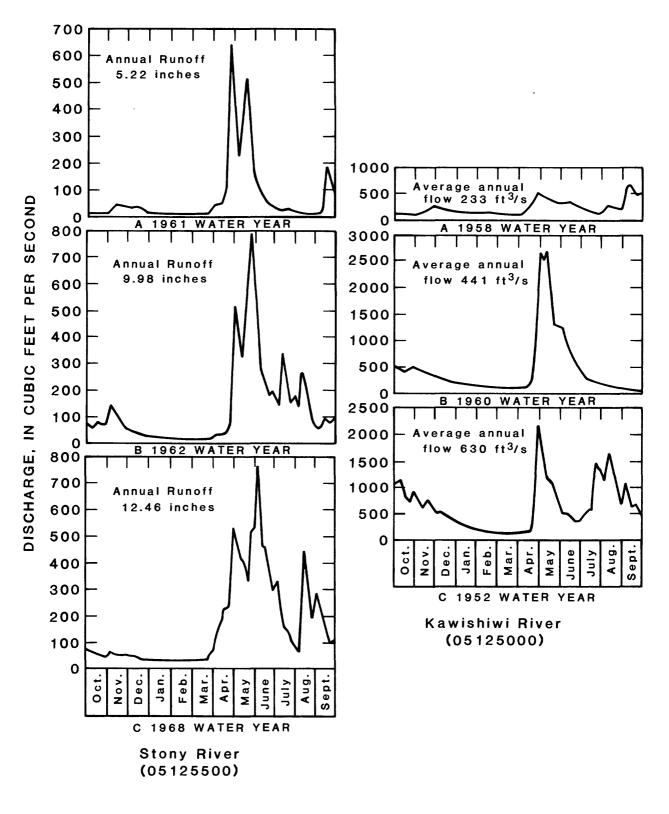


Figure 17.--Annual hydrographs of streams in the Kawishiwi River Basin

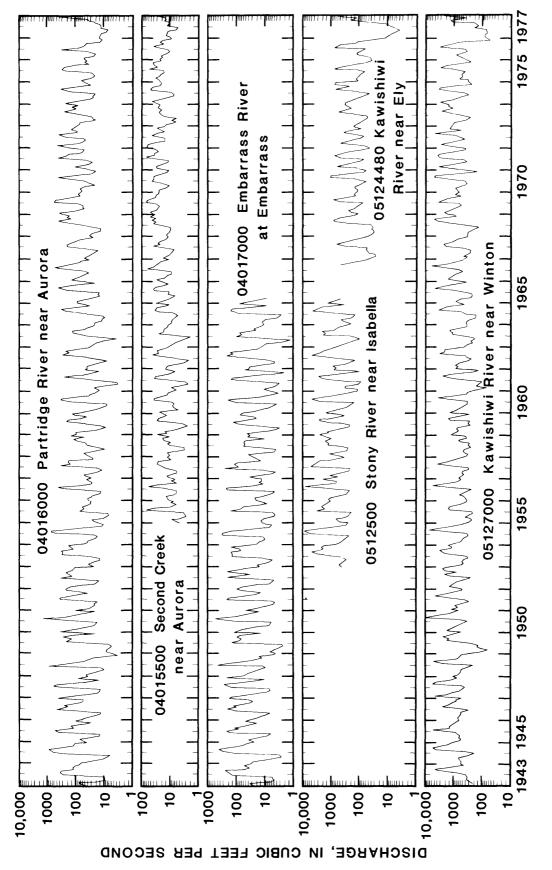


Figure 18.--Long-term hydrographs of selected streams in the Copper-Nickel study region

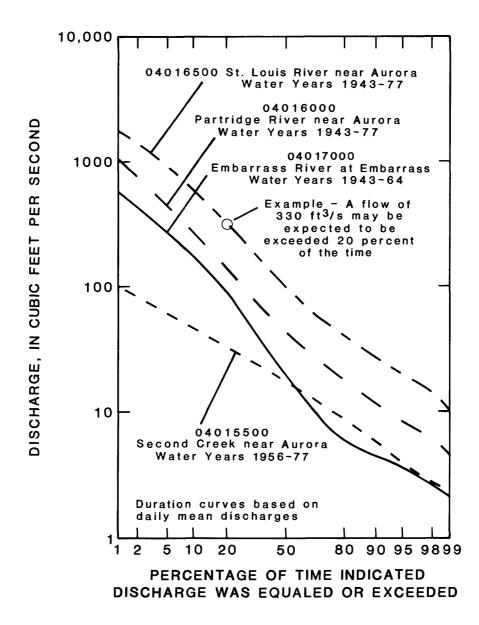


Figure 19.--Duration curves of daily flow in streams in the St. Louis River Basin

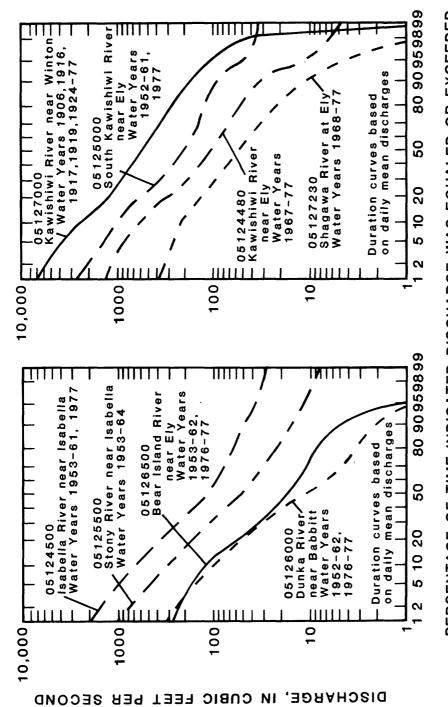


Figure 20.--Duration curves of daily flow of streams in the Kawishiwi River

basin

42

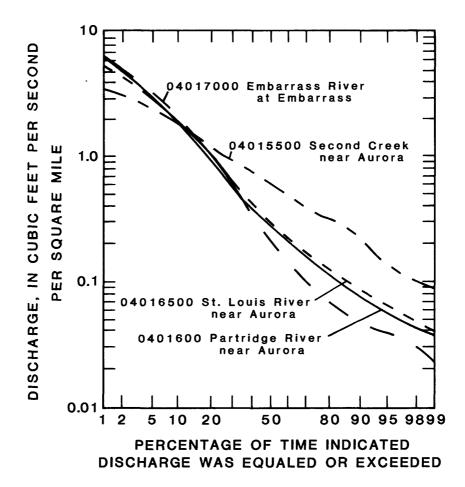
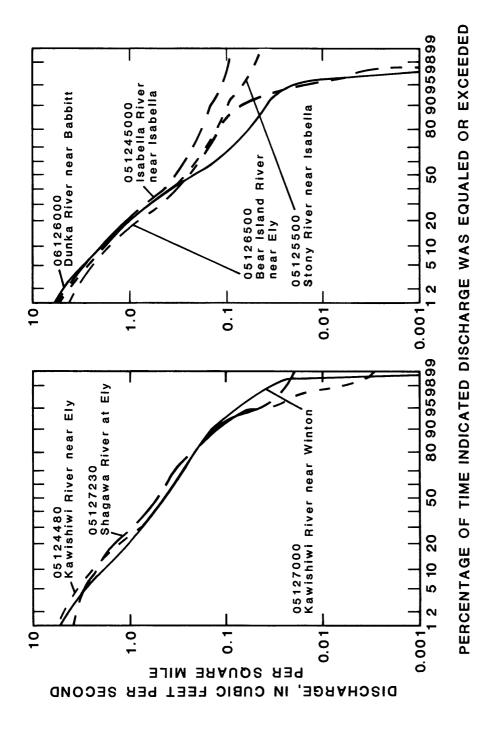
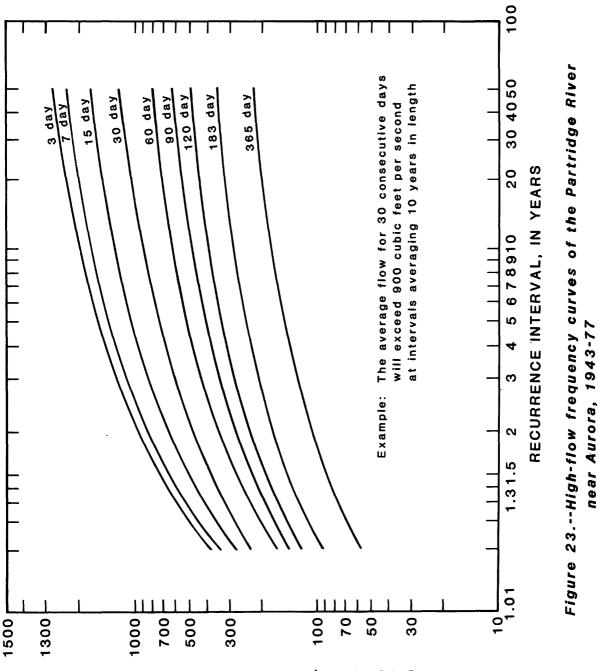



Figure 21.--Duration curves of daily flow per square mile of streams in the St. Louis River basin

A useful method to predict the extremes of streamflow is by frequency analysis of daily discharge. High-flow and low-flow frequency curves were prepared for selected time periods for all major streams by use of log-Pearson type III and graphical analysis. Figures 23 and 24 illustrate typical highflow and low-flow curves. Data obtained from these curves and curves for other streams are given in tables 10 and 11.


Seven-day low flows at 2-year and 10-year recurrence intervals were also estimated for eight periodic measurement sites where there was insufficient or no continuous streamflow records. Least-squares regressions were determined between base-flow discharges measured at these periodic sites and concurrent discharges at nearby gaging stations. Seven-day low-flow values at 2-year and 10-year recurrence intervals at the gaging stations were then used in the regression equations to determine the 7-day low flows at the periodic sites (table 12).

For streams with 10 or more years of record, flood frequency curves (fig. 25) were also developed through the use of log-Pearson type III analysis Data from these curves are in table 13. These curves show the recurrence intervals for the maximum mean daily discharges.

Floods are not a serious problem in most years because the area is sparsely populated, and encroachment on flood plains has been minimal. Some secondary roads are subject to occasional flooding and may be impassable for several days during snowmelt periods in the spring and after intense rainfall. The more severe floods cause considerable damage to culverts, bridges, and road grades. Some permanent residences and summer homes located on low areas adjacent to lakes or streams are flooded at times. Over 60 percent of the annual maximum floods occur in spring when the accumulated snowpack melts.

The flood in May 1950 was the maximum of record at all four gaging stations in operation. The record flood resulted from a combination of wet antecedent conditions, above normal snowfall, cold temperatures in April with sudden change to higher temperatures in May, and precipitation during the flood.

Records of streamflow for only a few years generally are inadequate to estimate flood magnitudes by the log-Pearson method, and other methods must be used. From data given in table 13, a plot of flood discharge versus contributing drainage area was made for each recurrence interval. Well-defined least-squares linear regressions occurred when data for stations downstream from large lakes was deleted. Based on these regression equations, flood discharges were estimated for streams for which only periodic discharge data or short records from gaging stations are available (table 14). Floodfrequency relationships for gage locations downstream from large lakes were used as a basis to estimate flood discharge for St. Louis River below Seven Beaver Lake near Fairbanks.

DISCHARGE, IN CUBIC FEET PER SECOND

46

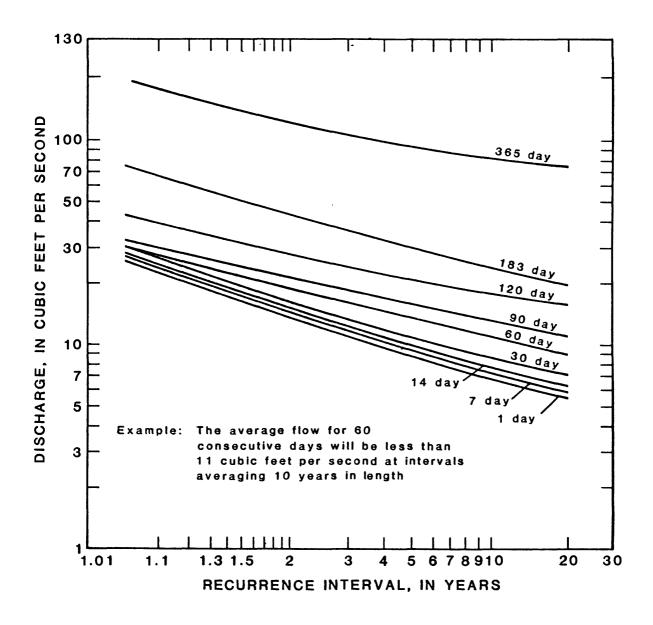


Figure 24.--Low-flow frequency curves of the Stony River, near Isabella, 1959-77

Figure plot- ting number	Station I.D. number	Station name	Period of record (climatic years)	Recur- rence inter- val (years)]	Freq		fannuāl atvariou 7					hange in		utive
21	04015500	Second Creek near Aurora		2 5 10 25	106 146 177 223	96.7 133 161 203	84.3 114 134 161	71.4 92.6 105 119	58.7	46.4 57.6 63.6 70	40.7 49.8 54.7 59.8	35.7 43.7 48.4 53.7	29.8 36.9 41.4 46.6	20.9 27.5 32.2 38.5
22	04016000	Partridge River near Aurora	1943-77	2 5 10 25 50	950 1600 2080 2613 2992	930 1560 1979 2460 2795	842 1367 1699 2087 2352	654 1033 1265 1532 1710	482 741 902 1093 1225	346 516 617 732 808	279 406 484 572 632	230 330 389 458 504	172 241 281 326 356	107 150 176 206 226
24	04016500	St. Louis River near Aurora	1943-77	2 5 10 25 50	1482 2306 2942 3852 4609	1451 2250 2852 3694 4381	1334 2063 2598 3332 3917	1123 1718 2141 2703 3139	902 1336 1636 2029 2331	678 966 1155 1391 1565	554 766 904 1077 1205	461 620 724 956 954	348 458 528 613 675	220 293 338 391 428
30	04017000	Pmbarrass River at Pmbarrass	1943–64	2 5 10 25 50	563 963 1268 1692 2034	529 896 1174 1559 1867	452 750 971 1275 1516	358 579 734 934 1086	282 441 548 680 777	20 5 302 363 437 490	166 236 280 336 377	139 194 228 270 300	104 142 165 193 212	60.4 82.9 97.7 116 130
33	05124480	Kawishiwi River near Ely	1967-77	2 5 10 25	1190 1497 1654 1823	1170 1483 1642 1814	1157 1437 1589 1753	1084 1319 1440 1563	915 1113 1213 1315	691 873 969 1069	539 691 784 895	439 557 630 718	334 410 448 486	229 283 304 321
40	05124500	Isabella River near Isabella	1953 -6 1 1977	2 5 10 25	1773 2709 3351 4178	1713 2620 3249 4064	1511 2313 2895 3684	1288 1946 2412 3030	1070 1568 1897 2306	809 1151 1351 1575	673 933 1074 1223	559 748 849 953	425 541 609 686	267 333 370 412
58	05125000	South Kawishiwi River near Fly	1952 -6 1 1977	2 5 10 25	2127 3497 4470 5746	2063 3407 4382 5687	1905 3186 4152 5492	1726 2844 3666 4781	1511 2334 2870 3556	1143 1699 2032 2411	939 1364 1619 1911	808 1136 1320 1518	618 834 964 1116	401 540 625 726
68	05125500	Stony River near Isabella	1953–64	2 5 10 25	796 1295 1679 2224	783 1266 1636 2159	731 1161 1485 1936	628 979 1235 1580	513 757 933 1170	382 541 648 785	314 442 528 640	260 357 421 505	200 263 303 352	125 158 176 195
79	051260 00	Dunka River near Babbitt	1952–62 1976–77	2 5 10 25	315 457 558 695	297 429 523 647	254 367 446 549	202 287 343 414	158 219 267 335	108 148 178 219	88.1 122 148 185	75.3 102 121 147	57.7 73.7 85.7 103	34.8 43.7 49.6 57.3
85	05126500	Bear Island River near Fly	1953–62 1976–77	2 5 10 25	234 329 368 450	230 324 363 445	221 311 349 410	206 293 345 400	179 250 281 335	129 180 205 252	107 147 167 186	90.8 123 139 15 5	68 90.5 102 112	40.2 52.5 59.6 67.6
86	05127000	Kawishiwi River near Winton	1906, 1916, 1917, 1919, 1924-77	2 5 10 25 50 100	4950 7410 8900 11100 12700 14600	12600	4763 7186 8696 10500 12400 14200	4445 6661 7986 9650 11000 12200	3779 5507 6506 7610 8329 8970	2843 4065 4738 5451 5897 6281	2327 3254 3753 4273 4594 4868	1943 2659 3057 3486 3759 4000	2250 2520 268 5	999 1330 1505 1687 1798 1893
87	05127230	Shagawa River at Ely	1968–77	2 5 10 25	333 436 508 603	331 432 501 592	323 415 476 553 I	310 382 422 466	273 342 382 430	217 282 323 372	185 243 270 324	161 205 232 265	126 156 173 190	87.5 112 124 134

Table 10.--High-flow characteristics of streams in the study region

Ι

Figure plot- ting number	I.D.	Station name	Period of record (climatic years)	Recur- rence inter- val (years)				low-flo s recurr 15				arge in		tive _365
21	04015500	Second Creek near Aurora	1956–77	2 5 10 20	4.79 2.51 1.77 1.32	4.9 2.66 1.93 1.47	5.3 2.95 2.18 1.68	5.63 3.12 2.29 1.77	6.11 3.4 2.49 1.92	7 3.89 2.84 2.17	7.89 4.6 3.46 2.73	8.79 5.42 4.24 3.48	12.2 7.78 6.25 5.26	20.9 16.2 14.5 13.2
22	04016000	Partridge River near Aurora	1944-77	2 5 10 20 50	10.4 5.89 4.22 3.14 2.21	10.7 6.11 4.41 3.31 2.35	11.1 6.44 4.71 3.58 2.59	11.8 6.76 4.93 3.75 2.72	12.7 7.27 5.36 4.15 3.08	14.3 8.36 6.27 4.93 3.74	16.4 10.1 7.9 6.43 5.11	21.4 13.6 10.7 8.76 6.96	35.5 19.7 14.4 11.2 8.36	109 74.8 60.0 49.4 39.2
24	04016500	St. Louis River near Aurora	1944-77	2 5 10 20 50	24.2 13.4 9.38 6.79 4.58	25.2 14.0 9.7 6.96 4.64	25.5 14.2 9.92 7.16 4.81	27.4 15.2 10.6 7.57 5.03	29.2 16.5 11.6 8.4 5.64	33.8 19.4 13.6 9.8 6.52	40.3 23.8 16.9 12.3 8.28	50.6 31.1 22.9 17.2 12.1	80.3 43.2 30.5 22.5 15.8	223 169 149 128 111
30	04017000	Embarrass River at Embarrass	1944–64	2 5 10 20 40	3.02 1.78 1.3 1.02 0.83	2.15 1.84 1.35 1.05 0.87	3.3 1.9 1.4 1.09 0.9	3.68 2.13 1.58 1.24 1.02	3.95 2.32 1.73 1.38 1.13	4.65 2.82 2.19 1.77 1.48	5.55 3.38 2.61 2.22 1.78	8.1 4.75 3.6 2.89 2.4	15.2 7.35 5.58 4.4 3.75	59 43.1 35.1 31 27.9
33	05124480	Kawishiwi River near Ely	1968–77	2 5 10 20	43.8 22.4 12.9 7.28	44.7 22.9 13.1 7.38	46.5 23.7 13.5 7.58	49.3 24.5 13.8 7.63	52.1 25.9 14.4 7.84	58.9 27.8 15.2 8.19	69.3 31.6 16.9 8.88	85.8 36.5 18.8 9.59	116 44.9 22.6 11.5	225 173 150 134
40	05124500	Isabella River near Isabella	1954 - 61 1977	2 5 10	49.8 37.5 31	50.6 38.1 31.4	52.2 38.2 31.6	53.9 39.2 32	57.4 41.7 33.8	62.8 46.5 38.1	69.5 50.9 41.2	84.4 60.1 46.5	108 67.6 48.9	277 231 208
58	05125000	South Kawishiwi River near Ely	1953 61 1977	2 5 10	93.2 55.3 38.6	94.3 56 39.1	96.7 57.7 40.5	100 60.1 42.6	105 63.2 44.5	121 73.8 51.9	137 85.5 60.7	154 96.6 68	173 99.9 69	419 336 298
68	05125500	Stony River near near Isabella	1954–64	2 5 10 20	11.8 7.5 5.9 4.7	12.2 7.75 6.1 5	12.8 8 6.24 5.35	13.4 8.3 6.5 5.3	14 8.6 6.7 5.5	17.2 10.9 8.5 7.1	21.8 13.1 10.2 8.2	27.8 17.8 13.2 10.2	43.5 28.9 23.1 19	119 86 72.9 66.2
79	05126000	Dunka River near near Babbitt	1953-62 1976-77	2 5 10	1.82 1.16 0.82	1.96 1.2 0.84	2.1 1.28 0.90	2.35 1.55 1.13	2.55 1.68 1.25	2.96 1.97 1.47	3.7 2.48 1.78	4.95 3.15 1.95	10 4.85 2.45	32.5 27.2 25.2
85	05126500	Bear Island River near Ely	1954-62 1976-77	2 5 10	2.53 0.82 0.39	2.79 0.9 0.46	3.3 1.26 0.65	3.9 1.71 0.96	5 2.05 1.1	7.98 3.8 1.81	10.1 6.1 2.97	12.5 6.75 3.25	15.7 7.55 3.5	40 28.5 23.8
86	05127000	Kawishiwi River near Winton	1907, 1914, 1917, 1925-77	2 5 10 20 50	32 0 		186 106 25 0	202 120 40 12 2.8	240 143 82 42.5 19.3	275 169 123 91.8 63.6	331 213 161 125 91.4	389 244 182 138 98.3	473 279 206 157 114	985 749 648 575 503
87	05127230	Shagawa River at Ely	1969-77	2 5 10 20	21 5.17 1.62 0.48	21.2 5.27 1.66 0.50	22.2 5.45 1.7 0.51	24.1 5.81 1.79 0.53	27.6 6.68 2.02 0.58	32 7.72 2.34 0.67	35.1 9.24 3.06 0.97	39.7 11.3 4.09 1.45	47.5 13.7 5.52 2.25	90.2 61.4 48.4 38.9

Table 11.--Low-flow characteristics of streams in the study region

Table 12.--Estimated low-flow characteristics at

١

periodic measurement sites

Station name	Estimated 7-day Q ₂ (ft ³ /s)	Estimated 7-day Q ₁₀ (ft ³ /s)
St. Louis River below Seven Beaver Lake near Fairbanks	. 1.2	0.3
St. Louis River near Skibo	. 2.0	0.5
South Branch Partridge River near Babbitt	. 0.3	0
Colvin Creek near Hoyt Lakes	. 0.8	0.5
Embarrass River near Embarrass	. 0.1	0
Stony River near Murphy	. 3.0	1.5
Greenwood River near Isabella	. 0.5	0.1

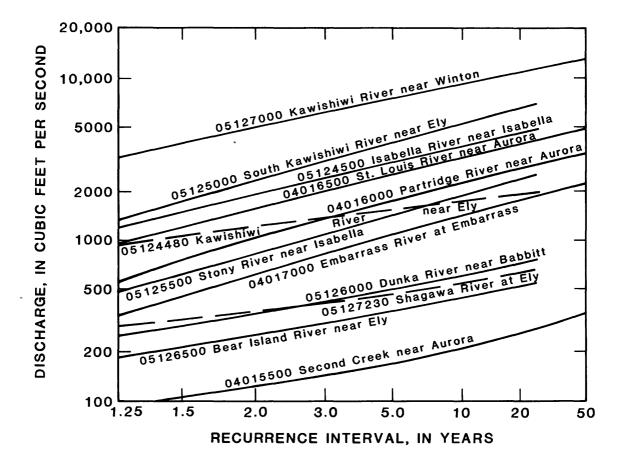


Figure 25.--Flood-frequency curves at gaging stations having 10 or more years of record

feet per recurrence <u>rears</u> 25 Q ₅₀	344	3550	4860	2200				**	l		13000	
Discharge in cubic feet per second for indicated recurrence interval, in years Q2 Q5 Q10 Q25 Q50	278	2960	4100	1800	1980	4820	6640	2530	740	536	11200	635
Discharge in cubic cond for indicated interval, in y Q2 Q5 Q10 G	214	2220	3140	1390	1740	3780	5130	1900	598	432	9200	542
charge 1 for 1 inte	168	1690	2460	1050	1540	3010	4000	1430	493	357	7500	470
bis secono	123	1020	1580	610	1220	1930	2330	830	344	250	5000	360
Years of record	53	35	35	22	11	11	11	12	12	12	63	10
Drainage arga (mi ²)	29 nc6.59	161 nc13.3	290 nc13.3	88.3	253	341		180	53.4 nc4.0	68.5	1229	66
Station name	Second Creek near Aurora	Partridge River near Aurora	St. Louis River near Aurora	Embarrass River at Embarrass	Kawishiwi River near Fly	Isabella River near Isabella	South Kawishiwi River near Ely	Stony River near Isabella	Dunka River near Babbitt	Bear Island River near Ely	Kawishiwi River near Winton	Shagawa River at Ely
Station I.D. number	04015500	04016000	04016500	04017000	05124480	05124500	05125000	05125500	05126000	05126500	05127000	05127230
Figure plotting number	21	22	24	30	33	0ħ	58	68	62	85	86	87

Table 13.--Flood-frequency characteristics at gaging stations having 10 or more years of record

nc - Noncontributing drainage area with respect to surface runoff.

	t per urrence	Q25	510	1140	Ì			ł	1330		2850
	ubic feet ated recu in years	Q10	408	813	405	100	390	250	066	820	2140
	Discharge in cubic feet per second for indicated recurrence interval, in years	6 ⁵	312	621	282	280	270	168	740	605	1630
cord	Discha second f	9 ₂	192	444	172	170	165	102	460	372	970
ars of re	Drainage area	(mi ²)	60.6	94	18.5	18.3	17.6	99•6	62	48.2	219
stations naving less than 10 years of record		Station name	St. Louis River below Seven Beaver Lake near Fairbanks	St. Louis River near Skibo	South Branch Partridge River near Babbitt	Colvin Creek near Hoyt Lakes	Embarrass River near Babbitt	Filson Creek near Ely	Stony River near Murphy City	Greenwood River near Isabella	Stony River near Babbitt
	Station I.D.		04015430	04015438	04015455	04015461	04016900	05124990	05125400	05125450	05125550
	Figure plotting	number	Ч	N	ω	13	25	57	63	66	70

stations having less than 10 years of record

Table 14.--Estimated flood-frequency characteristics at periodic-measurement sites and gaging

Flood-frequency characteristics at a gaged site can be transferred upstream or downstream by the relationship derived from ratio of drainage areas as follows:

$$Q_u = Q_g (A_u/A_g)^{0.6}$$

where: Q, is flood-frequency estimate for ungaged site,

 Q_g^u is flood-frequency value of gaged site, A_u is drainage area for ungaged site, A_g is drainage area for gaged site.

Use of the formula is limited to sites that differ in drainage area size by no more than 40 percent from that of the gaged site. Care should be used in transferring flood-frequency characteristics. For example, peak-flow data should not be transferred upstream or downstream across large lakes or reservoirs.

Mean and annual discharges at gaging stations are listed in table 15. The mean discharge for each calendar month defines the average flow pattern at a station. The quartiles of mean monthly discharges indicate the extent of variation from these monthly values. An example of nearly constant winter mean discharges is at Embarrass River at Embarrass (fig. 26) which is sustained by discharge from ground water during the winter. The mean discharge for January is 6.74 ft³/s, and the 25th and 75th percentiles are 4.88 and 8.08 ft³/s, respectively. At the other extreme, the mean May discharge at Kawishiwi River near Winton is 3,185 ft³/s, the 25th percentile is 1,714ft³/s, and the 75th percentile is 4,332 ft³/s, a range of 2,618 ft³/s.

Nearly 57 percent of the annual runoff occurs in April, May, and June, whereas flows during the winter months account for less than 11 percent of the annual runoff.

Monthly and annual average discharges were estimated for the periodic measurement sites by hydrographic comparison with nearby gaging stations and are listed in table 16. The user is cautioned that there could be considerable error in the estimated values for some months.

Average annual discharge can be estimated from the size of the drainage basin. Least-squares fit of average annual discharge and drainage area resulted in the following relationship:

 \overline{Q}_A = average annual discharge, in ft³/s, a = drainage area, in mi², where: correlation coefficient = 0.99.

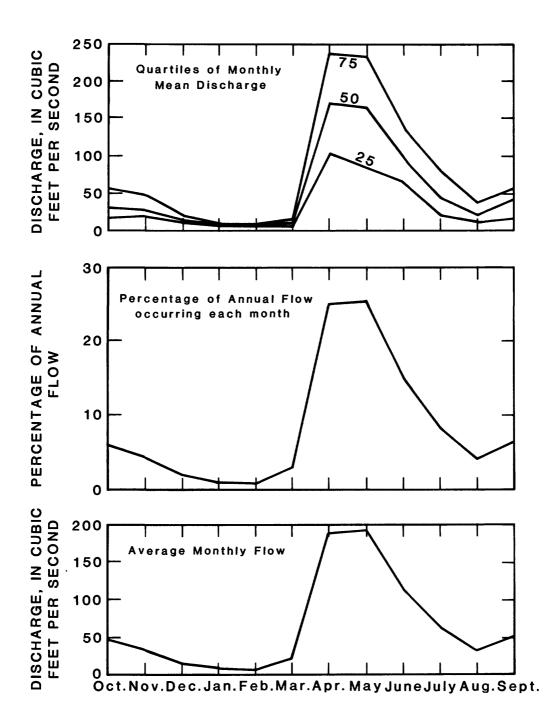

Use of the formula is limited to drainage areas exceeding 50 mi².

Table 15.--Statistics of monthly and annual discharges for gaging stations

with 9 or more years of streamflow records available

[Discharge and percentile measurements in ft³/s]

		Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Annual
04015500 Second Creek near Aurora	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	23.8 8.94 11.1 16.7 28.6	19.8 7.42 11.4 15.7 27.2	12.3 4.61 6.97 9.43 15.0	9.15 3.43 4.19 8.15 10.2	8.87 3.33 3.52 7.84 12.7	16.2 6.08 9.81 13.9 21.2	47.1 17.7 29.6 47.8 54.8	34.9 13.1 22.6 39.2 46.8	29.8 11.2 20.0 28.5 38.3	22.6 8.48 14.8 21.1 27.5	19.2 7.19 10.8 17.0 22.4	22.9 8.59 12.3 23.6 31.9	22.4 16.1 19 27.4
04016000 Partridge River near Aurora	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	97.1 7.24 35.9 50.6 95.0	71.0 5.29 38.4 50.3 79.3	34.3 2.56 22.5 29.3 42.6	20.5 1.53 12.1 16.7 24.0	17.4 1.30 8.40 14.1 24.7	40.5 3.02 14.7 19.1 38.1	271 20.2 85.7 234 386	333 24.8 173 287 434	210 15.7 134 179 272	101 7.55 46.0 76.9 135	64.4 4.80 27.6 39.9 92.2	80.7 6.02 25.5 56.1 111	112 73.7 102 135
04016500 St. Louis River near Aurora	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	193 7.03 67.9 118 208	157 5.72 76.0 126 185	78.5 2.86 51.7 70.7 98.9	47.7 1.74 35.3 44.9 53.9	35.6 1.30 24.0 32.0 43.8	75.2 2.74 30.9 46.1 69.3	526 19.1 321 408 685	696 25.3 372 647 895	425 15.5 279 367 548	214 7.79 130 164 293	138 5.04 62.0 88.8 173	161 5.87 50.0 103 247	230 168 218 270
04017000 Fmbarrass River at Fmbarrass	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	45.8 5.96 15.5 29.7 55.1	32.8 4.27 17.2 26.0 46.2	14.0 1.82 9.55 12.5 19.3	6.74 0.88 4.88 6.31 8.08	5.00 0.65 3.10 5.05 6.36	22.0 2.86 4.91 7.53 13.7	190 24.8 101 170 238	194 25.2 84.3 165 233	114 14.8 61.5 95.3 137	63.2 8.21 19.3 42.5 80.1	31.3 4.07 9.27 18.1 36.5	49.9 6.49 15.0 41.1 57.1	64.4 39.5 55.8 75.1
05124480 Kawishiwi River near Ely	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	112 4.23 38.6 102 132	204 7.70 31.8 145 270	143 5.41 39.1 133 168	95.5 3.60 57.0 107 133	71.6 2.70 58.5 78.1 93.2	58.5 2.21 52.8 61.6 74.6	315 11.9 141 266 515	729 27.5 579 777 906	450 17.0 234 344 666	212 8.00 134 182 280	119 4.50 72.4 98.0 160	140 5.27 41.5 65.6 172	223 167 218 259
05124500 Isabella River near Isabella	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	144 4.42 78.5 130 186	167 5.10 106 175 229	120 3.66 100 124 147	80.3 2.45 67.6 81.6 102	66.9 2.06 51.3 69.6 84.4	73.4 2.24 60.7 67.2 87.3	631 19.3 334 581 869	818 25.0 415 706 1197	502 15.3 362 478 674	225 6.89 97.2 202 348	143 4.38 68.4 121 202	301 9.19 74.3 223 456	272 187 246 331
05125000 South Kawishiwi River near Ely	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	280 5.57 140 189 357	257 5.12 162 212 337	218 4.33 165 210 255	164 3.25 136 170 193	129 2.57 112 147 155	114 2.27 101 118 131	712 14.1 327 615 925	1308 26.0 701 1135 1803	729 14.5 437 718 870	430 8,54 239 358 567	285 5.66 138 197 294	407 8.09 100 335 712	419 236 362 596
05125500 Stony River near Isabella	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	74.7 4.91 54.1 64.4 121	74.8 4.92 39.9 69.4 105	47.2 3.11 37.0 42.0 58.7	27.0 1.78 22.2 27.6 32.7	21.0 1.38 17.5 22.0 27.2	20.7 1.36 15.0 20.5 24.4	237 15.6 147 205 296	449 29.5 219 449 541	259 17.0 156 258 354	116 7.65 58.0 77.6 197	82.3 5.41 30.7 62.3 138	111 7.32 34.7 89.8 170	127 85.6 112 153
05126000 Dunka River near Babbitt	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	20.8 4.71 10.1 16.3 35.5	23.8 5.38 13.3 17.7 34.0	9.60 2.17 6.15 7.99 12.2	3.99 0.90 2.82 4.31 5.30	2.72 0.62 1.88 2.90 3.65	7.04 1.59 3.25 5.24 8.95	116 26.2 53.9 115 149	95.7 21.7 49.5 89.1 130	64.4 14.6 41.0 58.4 87.9	34.2 7.73 14.7 27.0 47.9	19.8 4.47 5.31 13.76 27.6	44.3 10.0 11.7 30.4 81.2	36.6 26.8 33.5 40.1
05126500 Bear Island River near Ely	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	17.7 3.52 6.83 9.90 36.0	19.7 3.92 13.2 20.2 25.3	19.0 3.79 13.1 19.2 23.5	13.4 2.67 9.31 13.1 16.4	10.3 2.06 7.60 10.3 12.6	12.0 2.39 8.51 11.4 14.5	92.3 18.4 38.2 87.9 134	133 26.6 73.3 127 186	78.6 15.7 51.1 65.0 103	49.6 9.90 24.7 30.1 77.4	18.8 3.75 6.86 11.1 25.6	36.6 7.31 4.46 14.3 40.7	41.2 27.2 37.9 46.7
05127000 Kawishiwi River near Winton	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	527 6.85 327 533 1036	712 5.89 321 581 884	560 4.63 317 540 766	436 3.61 256 445 582	330 2.73 232 303 396	342 2.83 230 331 420	1175 9.72 439 844 1541	3185 26.4 1714 2949 4332	2020 16.7 1148 1611 2547	1121 9.28 670 971 1363	663 5.49 388 537 789	713 5.90 348 552 907	1019 599 883 1118
05127230 Shagawa River at Fly	Average discharge Percent annual flow 25th percentile 50th percentile 75th percentile	64.5 6.31 14.8 33.8 139	73.2 7.16 15.2 51.0 126	61.3 5.02 13.3 41.7 84.1	39.4 3.85 16.1 37.6 68.5	34.7 3.40 14.1 33.5 53.2	32.6 3.19 21.8 31.0 47.7	112 11.0 74.3 98.9 172	212 20.7 151 236 270	173 16.9 96.2 146 268	109 10.6 79.4 94.1 105	61.4 6.00 33.4 56.0 78.8	60.0 5.86 20.3 33.0 72.5	86.6 45.5 83.4 107
	centage of annual all 12 stations	5.81	5.66	3.66	2.47	2.01	2.73	17.3	24.2	15.4	8.38	5.06	7.16	

ſ

?

Figure 26.--Statistics on monthly average discharge of the Embarrass River

Table 16.---Estimated monthly and annual average discharges at

periodic measurement sites for 1976-77 water years

	Annual	25	41	9.0 6.8	8.7 9.9	9.0 4.4	55 44	54 60	40 19	154 76
'nď	Sept. A	0.4 190	0.5 265	0 44.9	0.3 68	0.02 27	1.7 212	0.9 350	$\begin{smallmatrix}&0.1\\118\end{smallmatrix}$	4.6 402
per second	Aug.	1.3 13	2.5 25	0.1 5.59	0.7 12	0.2 3.7	3.3 67	1.9 13	0.7 8.6	13 28
feet	July	23 33	49 82	3.2 7.98	5.5 10	1.9 4.9	21 56	20 62	30 119	105 157
cubic	June	34	62	3.7 15	6.7 13	7.4 10	72 94	40 100	44 42	166 185
s, in	May	3.7	51	7.0 5.3	4.9 7.0	50. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1	47 38	<u>8</u> 2	51 5.7	218 45
average discharges	Apr.	1.5	12	84 3.2	70 5.0	75 2.8	332 27	410 36	265 5.3	893 50
ge dis	Mar.	1.4	4.6	1.7 0.2	2.8 1.2	5.3 1.4	19 15	17 10	5.0 0.4	38 19
	Feb.	0.4	0.2	6. 0	1.7 0.4	1.2 0	10 1.7	8.9 0.9	5.4	30.7.0
Estimated	Jan.	1.0	1.2	1.0 0	1.9 0.5	1.1	12 1.5	8.7 1.2	8.7 0	41 7.7
Est	Dec.	0.3	0.4	5°.3	8.8 0.3	2.5 0.05	27 1.5	22 2 . 3	18 0	84 8.3
	Nov.	0.2	0.4	ч. 0 З	5.3 0.9	5.7 0.11	62 4.5	47 3.2	35 35	162 8.1
	Oct.	0.5	0.6	1.7 0	2•2 0•6	3.8 0.05	42 5.3	27 3 . 2	50	100 5.4
Maten	year	1976 1977	1976 1977	1976 1977	1976 1977	1976 1977	1976 1977	1976 1977	1976 1977	1976 1977
	Station name	St. Louis River below Seven Beaver Lake near Fairbanks	St. Louis River near Skibo	South Branch Par- tridge River near Babbitt ^a	Colvin Creek near Hoyt Lakes	Embarrass River near Babbitt	Fmbarrass River at Fmbarrass ^b	Stony River near Murphy City	Greenwood River near Isabella	Stony River near Isabella ^b
Station T D		04015430	04015438	04015455	04015461	04016900	04017000	05125400	05125450	05125500
Figure plot- ting	number	1	\sim	ω	61 57	25	30	63	66	68

^aConverted to continuous record gaging station June 1977. ^bAt discontinued gaging station, continuous stage record available. Base flow of a stream is a measure of the amount of ground-water and surface-water discharge from storage that sustains streamflow during periods of little precipitation. Base flows measured from August 23-27, 1976, at gaging stations on unregulated streams fall between 88 and 99 percent duration values on flow-duration curves for those stations. Data for 88 other baseflow measurement sites are listed in table 17. Most of the sites are shown in figure 14.

Some of the measurements do not represent natural base flow because of diversion, augmentation, or other factors. All measurements in Second Creek and Partridge River (sites 17-24) were affected by mining activities. In the Kawishiwi River basin, dams controlled the flow at sites 82 and 86.

Streamflow increased downstream in most streams. The few channel reaches that had decreases in flow were scattered and losses were generally small. The discharge measurements were made during a period when evapotranspiration losses were high, which probably accounts for some of the flow losses. Some of the $4.15 \, \text{ft}^3/\text{s}$ increase in flow of the St. Louis River between sites 4 and 6 is attributed to seepage from Partridge Reservoir.

Streamflow decreased 0.7 ft³/s in the 2.8 mile reach of Dunka River between sites 78 and 79. Subsequent baseflow measurements at these two sites indicated flow losses as much as 1.38 ft³/s. A sand and gravel aquifer that underlies the Dunka River is exposed in an open-pit mine only a few hundred feet from the river. Mine drainage has lowered heads in the aquifer below the level of the Dunka River, inducing flow from the river.

Water Quality

Suspended sediment was measured periodically from Dunka, Bear Island, Stony, and Kawishiwi Rivers to estimate the average annual sediment loss from typical watersheds (table 18). These estimates were determined through flowduration data and correlations between suspended-sediment discharge and stream discharge.

The average suspended-sediment yield of about 5 (tons/mi²)/yr of the Dunka, Bear Island, and Kawishiwi River stations and about 4 (tons/mi²)/yr of the Stony River is low compared with yields of nearby basins. For example, the estimated annual suspended-sediment yields of the Pigeon River near Grand Portage and the St. Louis River near Forbes are 12 and 9.2 (tons/mi²)/yr, respectively. Yields in the study region probably are low because of sediment deposition in wetlands and on-channel lakes.

Water temperature and specific conductance were monitored continuously from 1 to 3 years at Partridge River above Colby Lake at Hoyt Lakes, Stony River near Babbitt, and Dunka River near Babbitt. At Kawishiwi River near Ely, a continuous record of water temperature has been collected since July 1966. In addition to the continuous records, water temperature and specific conductance, were periodically measured when discharge was measured.

58

Pigure blott- ing number	Station I.D. number	Stream	Location	Drainage area (mi ²)		Discharge (ft ³ /s)	Water temper- ature (°C)		Base flo yield [(ft3/s) mi ²]
1	04015430	St. Louis River	At Reserve Mining RR bridge, 1.3 miles downstream from Seven Beaver Lake and 9.3 miles northeast of Fairbanks.	60.6	183.7	0.52	22.5	46	0.009
2	04015438	do	At Forest Service Road 133, 2 miles southeast of Skibo.	94.0	170.9	-95	23.0	93	.010
3		do	At County Highway 346, 3.6 miles southeast of Hoyt Lakes.	114	161.1	1.06	20.5	70	•009
4		do	2.5 miles upstream from Partridge River and 3 miles southwest of Hoyt Lakes.	123	156.3	-87	24.0	80	.007
5		Levee drain	At Whitewater Lake outlet, 2.5 miles southwest of Hoyt Lakes.						
6		St. Louis River	150 feet upstream from Partridge River and 1.5 miles south of Aurora.	126	153.9	5.02	20.0	210	.040
7	04015447	Partridge River	At Erie Mining Road, 6.5 miles south of Babbitt.	18.2 nc 5.8	184.0	.27	20.0	300	.015
8	04015455	South Branch Partridge River	At National Forest Road 116, 10 miles northeast of Hoyt Lakes.	18.5	184.2	0			
9		South Branch Partridge River	0.6 mile upstream from mouth and 9 miles southwest of Pabbitt.	28.9	180.3	.04	17.5	110	.001
10		Partridge River	0.8 mile downstream from South Branch Partridge River, and 9.4 miles southwest of Babbitt.	56.0 nc 5.8	178.8	•07	18.5	340	.001
11		Colvin Creek	At County Highway 680, 2.7 miles northeast of Skibo.	4.57	9.0	.002	18.0	122	.0001
12		Colvin Creek tributary	At National Forest Road 420, 1 mile upstream from mouth and 8.3 miles east of Hoyt Lakes.	4.21		0			0
13	04015461	Colvin Creek	At Forest Service Road 420, 7 miles east of Hoyt Lakes.	18.3	3.9	•25	22.5	106	.014
14		Colvin Creek	0.1 mile upstream from mouth, and 11 miles northeast of Aurora.	22.0	0.1	.22	26.0	79	.010
15	04015474	Partridge River	At County Highway 110, 1 mile north- east of Hoyt Lakes.	106 nc 6	163.3	.50	22.0	185	.005
16		Wyman Creek	At County Highway 110, 0.5 miles upstream from mouth, and 1.7 miles northeast of Hoyt Lakes.	10.4 nc 0.9		.20	19.0	370	.019
17		Second Creek	At County Highway 666, 4 miles north	7.56		5.89	19.5	610	.779
18		Second Creek	of Hoyt Lakes. At County Highway 110, 3.0 miles northeast of Aurora.	nc 2.50 10.6 nc 2.9		2.87	22.0	700	.271
19		Stephens Creek	At County Highway 110, 2.5 miles northeast of Aurora.	3.91 nc 3.05		.44	20.0	380	.113
20		First Creek	0.1 mile upstream from mouth and 2 miles east of Aurora.	5.74 nc 0.68		3.46	20.5	1250	.603
21	04015500	Second Creek	0.1 mile downstream from First Creek 0.4 mile upstream fro 2.1 miles east of Aurora.	, 29.0		9.28			.350
22	04016000	Partridge River	At County Highway 110, 1,000 feet downstream from Second Creek, and 2.5 miles east of Aurora.	161 nc 13	157.6	^b 10.3			.085
23		Partridge River	0.1 mile upstream from mouth, and 2 miles south of Aurora.	164 nc 13	153.8	10.3	21.0	670	.064
24	04016500	St. Louis River	At County Highway 100, 1.5 miles south of Aurora.	290 nc 13	153.4	^b 20			.066
25	04016900	Emb arrass River	At County Highway 620, 100 feet upstream from Spring Mine Creek, and 5.9 miles southwest of Babbitt.	17.6	43.7	.02	19.5	216	.001

Table 17.---Baseflow, specific conductance, and water temperature measurements in streams in the Copper-Nickel study region, August 23-27, 1976

Figure plott- ing number	Station I.D. number	Stream	Location	Drainage area (mi ²)	River mile location	Discharge (ft ³ /s)	Water temper- ature (°C)	tance	Base flow yield [(ft ³ /s)/ mi ²]
26		Spring Mine Creek	At mouth, about 6.0 miles southwest of Babbitt.	6.08		•25	16.5	136	.042
27		Camp Eight Creek	At County Highway 21, 0.7 mile upstream from mouth, and 4 miles northeast of Embarrass.	5.22		0.02	16.0	122	.004
28		Trimble Creek	At County Highway 104, 2.6 miles east of Embarrass.	6.34		.44	20,5	636	.069
29		Bear Creek	At County Highway 21, 0.7 mile upstream from mouth, and 2.1 miles north of Embarrass.	30.1		.31	22.5	122	.010
30	04017000	Embarrass River	At County Highway 362, in Embarrass.	88.3	28.1	1.76	23.5	232	.020
31		Embarrass River tributary	At County Highway 21, 0.3 mile west of Embarrass.	4.04		0			0
32		Embarrass River	At State Highway 135, 3 miles south- west of Embarrass.	110	24.6	4.61	23.5	373	.042
33	05124480	Kawishiwi River	2 miles upstream from South Kawishiwi River, 14 miles east of Ely.	253	70.2	^a 37			.146
34		Kawishiwi River (North Channel)	2.8 miles below (anabranch) South Kawishiwi River, and 8.7 miles east of Winton.			24	20.5	<50	.183
*35		Inga Creek	At National Forest Road 377, 9.7 mile northwest of Isabella.	s 6.75		1.03	24.0	136	.153
*36		Inga Creek	At National Forest Road 381, 12 miles northwest of Isabella.	3.38		.61	22.0	127	.180
*37		Little Isabella River	At culvert between Flathorn and Rat Lakes, 5.4 miles southwest of Kelly Landing.	31.5		6.16	17.5	125	.196
*38	05124497	do	At National Forest Road 173, 7 miles upstream from mouth, and 11 miles northwest of Isabella.	48.3		6.93	22.0	95	.143
*39		do	At National Forest Road 381, 3 miles upstream from mouth, and 12 miles northwest of Isabella.	53.2		8.75	24.5	85	.164
40	05124500	Isabella River	200 feet upstream from Bald Fagle Lake and 14.5 miles northwest of Isabella.	341	0	^a 36			.106
41		Snake River	At National Forest Road 173, 13 miles northwest of Isabella.	7.17		1.47	21.0	188	.205
42		Snake Creek	At National Forest Road 173, 1 mile upstream from mouth, and 12 miles northwest of Isabella.	3.49		.82	19.5	117	•235
43	05124600	Snake River	1.0 mile upstream from mouth and 16 miles southeast of Ely.	16.2		1.60	22.0	150	.099
44		Bald Eagle Lake tributary	At mouth, 16 miles southeast of Ely.	3.21		0			0
45		Bald Eagle Lake tributary No. 2	At mouth, 15 miles southeast of Ely.	9.36		.10	19.0	50	.011
46		Bald Eagle Lake tributary No. 3	At mouth, 14 miles southeast of Ely.	.80		.01	20.0	60	.012
47		August Creek	At National Forest Road 388, 16 miles northeast of Babbitt.	7.44		.05	23.0	100	.007
48	05124650	August Creek	300 feet upstream from Bald Eagle Lake and 13 miles southeast of Ely.	14.7		.71	19.0	130	.048
49	05124700	Bald Eagle Creek	0.2 miles upstream from Bald Eagle Lake and 13 miles southeast of Fly.	4.33		•19	18.0	130	.044
50	05124840	Cobalt Creek	0.1 mile upstream from Gabbro Lake and 12 miles southeast of Ely.	2.94		0			0

Table 17.---Baseflow, specific conductance, and water temperature measurements in streams in the Copper-Nickel study region, August 23-27, 1976---Continued

Table 17Basefl	ow, specific conductance, and	water temperature measurements
in streams in th	e Copper-Nickel study region,	August 23-27, 1976Continued

Figure plott- ing number	Station I.D. number	Stream	Location	Drainage area (mi ²)	River mile location	Discharge (ft ³ /s)	Water temper- ature (°C)	tance	Base flow yield [(ft ³ /s)/ m1 ²]
51	05124880	Nickel Creek	0.1 mile upstream from Gabbro Lake and 20 miles northwest of Isabella.	1.89		.007	23.0	<50	.004
52	05124890	Gabbro Lake out- let (dam No. 1)	- At Gabbro Lake dam No. 1, 12 miles southeast of Ely.			52.2	21.5	60	•134
53	05124900	Gabbro Lake out- let (dam No. 2)	At Gabbro Lake dam No. 2, 11 miles southeast of Ely.	416		3.75	24.0	60	.134
54		Filson Creek	3/4 mile downstream from Omaday Lake outlet, and 15 miles northeast of Babbitt.	3.61	4.4	.02	22.0	<50	.006
55	05124980	Filson Creek	At National Forest Road 181, 9 miles southeast of Winton.	4.96	2.6	.02	16.0	<50	.004
56		Filson Creek tributary	0.1 mile upstream from mouth and 10 miles southeast of Ely.	3.03		0			0
57	05124990	Filson Creek	At National Forest Road 181, 0.8 miles upstream from mouth and 10 miles southeast of Ely.	9.66	.8	a.07	20.0	52	.007
58	05125000	South Kawishiwi River	5 miles upstream from Birch Lake and 9 miles southeast of Ely.		60.0	^a 89			
59		Keeley Creek	At State Highway 1, 12 miles south- east of Ely.	4.23		0			0
60	05125040	Keeley Creek	0.1 mile upstream from mouth and 10 miles northeast of Babbitt.	11.2		.02			.002
61		Stony River	At Erie Mining RR bridge, 3 miles downstream from Spur Rnd Creek and 7 miles northeast of Whyte.	27.1	35.0	.25	22.0	90	.009
*62		do	At National Forest Road 393, 6 miles southwest of Isabella.	57.2	29.9	1.01	19.5	110	.018
63	05125400	do	At National Forest Road 106, 0.8 mile upstream from McDougal Lake, and 8 miles west of Isabella.	62.0	26.2	1.24	23.5	80	.020
64		Coyote Creek	At National Forest Road 106, 0.4 mile upstream from McDougal Lake, and 9 miles west of Isabella.	8.18		<.01			.001
65		Stony River	0.4 mile downstream from McDougal Lake outlet, and 10 miles northwest of Isabella.	80.1	23.2	1.70	26.0	60	.021
66	05125450	Greenwood River	At bridge on logging road, 4.5 miles downstream from Greenwood Lake and 13 miles west of Isabella.	48.2		.48	25.5	45	.010
67		Stony River	At State Highway 1, 0.5 mile upstream from Camper's Lake outlet, and 15 miles southeast of Babbitt.	163	19.2	1.95	21.0	100	.012
68	05125500	Stony River	At State Highway 1, 11 miles upstream from Birch Lake, and 12.8 miles northwest of Isabella.	180	13.4	^a 6.6			.037
69		Nip Creek	At National Forest Road 178, 1 mile downstream from Jackpot Creek, and 18 miles northwest of Isabella.	24.8		1.28	26.0	85	.052
70	05125550	Stony River	At National Forest Road 424, 4.7 miles upstream from mouth, and 8.5 miles southeast of Babbitt.	219	4.9	12.4	22.0	90	.057
71	05125600	Denley Creek	0.1 mile upstream from Nira Creek and 13 miles southeast of Ely.	4.34		<.01			.002
72	05125620	Nira Creek	0.1 mile upstream from mouth, and 13 miles southeast of Ely.	10.5		. 60	19.5	95	. 057
73	05125650	Stony River	0.1 mile upstream from Birch Lake and 14 miles southeast of Ely.	244	.1	9.33	25.0	90	.038
74	05125730	Birch Lake tributary	0.1 mile upstream from Bob Bay on Birch Lake, and 6 miles east of Babbitt.	4.32 nc 0.69		.68	20.0	70	.157
75	05125950	Dunka River	At National Forest Road 116, 15 miles northeast of Hoyt Lakes.	8.26	13.4	.004	24.0	130	.0005

Figure plott- ing number	Station I.D. number	Stream	Location	Drainage area (mi ²)	River mile location	Discharge (ft ³ /s)	Water temper- ature (°C)	tance	Base flow yield [(ft ³ /s)/ mi ²]
76		Langley Creek	At Erie Mining Company road, 5 miles southeast of Babbitt.	8.92 nc 3.50		.05	27.5	422	.006
77		Twenty Proof Creek	At National Forest Road 112, 6 miles southeast of Babbitt.	2.99		.09	22.0	136	.030
78		Dunka River	At National Forest Road 424, 5 miles southeast of Babbitt.	43.8 nc 3.5	4.5	.76	24.5	260	.017
79	05126000	Dunka River	1.8 miles upstream from Birch Lake, and 3.8 miles southeast of Babbitt.	53.4 nc 4.0	1.7	.06	27.0		.001
80		Birch Lake tributary	At National Forest Road 112, 1 mile northeast of Babbitt.	3.02		0			0
81		Birch River	At County Highway 21, 1.5 miles northwest of Babbitt.	27.8		•39	19.0	136	.014
82	05126210	South Kawishiwi River	0.5 mile upstream from White Iron Lake, and 5.0 miles southeast of Ely		50.6	35.8	25.0	75	
83		Bear Island River	At County Highway 21, 7 miles north- east of Babbitt.	37.8		.28	23.0	60	.007
84		Johnson Creek	At County Highway 21, 8 miles north- east of Babbitt.	10.4		<.01	24.5	95	.001
85	05126500	Bear Island River	At State Highway 1, 1.2 miles upstream from mouth, and 5.0 miles south of Ely.	68.5		1.80	24.5	55	.026
86	05127000	Kawishiwi River	At Minnesota Power and Light Company powerplant, 1.8 miles east of Wintor		41.4	°0			0
87	05127230	Shagawa River	300 feet downstream from outlet of Shagawa Lake, and 3 miles upstream from Fall Lake.	99.0		11.5	23.5	75	.116
88	05127250	Kawishiwi River	At Fall Lake outlet, 5 miles north- east of Winton.	1352	37.8	77.0	20.5	55	.057

Table 17.--Baseflow, specific conductance, and water temperature measurements in streams in the Copper-Nickel study region, August 23-27, 1976--Continued

* -- Site not shown on plate.
 a -- Determined from rating table.
 b -- Mean-daily discharge for August 24-27, 1976.
 ^c -- Regulated.

nc - Noncontributing drainage area with respect to suface runoff, drainage area listed for site includes noncontributing drainage area.

Date	Time	Water temper- ature (°C)	Instan- taneous S discharge (ft ³ /s)	Suspended sediment (mg/L)	Suspended sediment discharge (tons/d)	Date	Time	Water temper- ature (°C)	Instan- taneous discharge (ft ³ /s)	Suspended sediment (mg/L)	Suspended sediment discharge (tons/d)
05124480 Kawishiwi River near Ely						051255	50 Story	y River ne	ar Babbitt		
1- 3-68 5- 2-68 5-29-68 6-19-68 7- 3-68 8- 6-58 10-23-68 12-30-68 5- 6-69 7-24-69 8-27-69 9-30-69	1020 1020 1400 1230 1430 1500 1200 1100 1130 1515	.5 11.0 17.0 16.0 21.5 16.5 9.0 .0 14.0 21.0 22.0 13.0	33 1030 547 1200 698 204 100 373 139 1230 126 154 121	1234422212421	0.09 5.6 4.4 13 7.5 1.1 0.54 2.0 0.38 6.6 1.4 0.77 0.33	$\begin{array}{c} 11-3-75\\ 12-19-75\\ 1-30-76\\ 3-2-76\\ 4-7-76\\ 4-12-76\\ 4-20-76\\ 4-20-76\\ 4-20-76\\ 4-26-76\\ 5-27-76\\ 5-27-76\\ 5-27-76\\ 8-4-76\\ 8-4-76\\ 8-4-76\\ 9-28-76\\ 10-10-76\\ 12-15-76\\ 3-23-77\\ 4-27-77\\ 6-9-77\\ \end{array}$	1615 1100 1205 1620 1255 1515 1600 1528 1440 1100 1310 1300 1530 1530 1510 1330 1220 1015	5.5 .0 2.5 5.0 2.5 5.0 11.5 19.2 23.0 19.5 19.0 12.0 .5 5.5 13.5 18.5	128 62 49 278 695 961 2380 1220 83 171 23 16 7.8 12 11 33 125 306	8351235465692423226	$\begin{array}{c} 2.8\\ 0.50\\ 0.66\\ 0.11\\ 1.5\\ 5.6\\ 13\\ 26\\ 20\\ 1.1\\ 2.8\\ 0.56\\ 0.09\\ 0.08\\ 0.06\\ 0.09\\ 0.18\\ .68\\ 5.0\\ \end{array}$
05126500 Bear Island River near Ely					05126000 Dunka River near Babbitt						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1145 1600 1750 1450 1540 1540 1500 0830 1630 1140 0915 1630 1735	9.5 .0 3.5 7.5 8.0 16.5 11.0 24.5 1.5 .50 13.5 20.0	22 36 16 96 243 184 29 45 4.7 .28 2.4 2.6 6.0 118	8 11 5 9 7 16 5 4 71 10 8 5 4 4	.48 1.1 .22 2.3 4.6 7.9 .39 .49 .90 .01 .05 .04 .06 1.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1345 1500 1530 0945 1000 1100 1015 1145 1300 1645 1515 1550	5.0 .5 .5 16.5 20.5 24.0 9.2 .0 12.5 17.0	26 16 3.7 6.6 277 299 8.6 8.5 .05 .63 .30 16 78	8 2 3 17 7 8 2 2 6 10 3	$ \begin{array}{r} .56\\.09\\.02\\.05\\13\\5.6\\.19\\.05\\.00\\.00\\.00\\.00\\.43\\.63\end{array} $

Table 18.---Meaurements of suspended-sediment discharge

The daily mean discharge, and daily range of water temperatures and specific conductance were measured during the 1976 water year for Stony River near Babbitt (fig. 27), a stream unaffected by regulation. An inverse relationship, in general, exists between discharge and specific conductance (fig. 28). Specific conductance is at a minimum when most of the water is from surface runoff during high-flow. During low-flow periods when streamflow is largely ground-water discharge, specific conductance is at a maximum.

The maximum specific conductance observed at the Stony River gage near Babbitt from May 1975 to June 1978 was 160 micromhos on December 15, 1977. Minimum specific conductance observed during the period was 39 micromhos on May 10, 1978.

The daily mean discharge, and daily range of water temperatures and specific conductance during the 1976 water year for Dunka River near Babbitt (fig. 29) are representative of a stream affected by mining activities. During periods of low flow, the large daily flucutations in specific conductance are caused by the addition of water with high specific conductance from openpit mines. During periods of high flow, overland runoff dilutes the mine discharge, and specific conductance is low, similar to the Stony River.

Monthly and annual statistics on water-temperature data obtained at stream-gaging stations equipped with continuous water-temperature recorders are listed in table 19. The annual mean water temperatures of the four streams are similar for the 1976-77 water years. The 0.6 to 0.8°C higher annual mean water temperatures at Kawishiwi River near Ely is caused by thermal storage in on-channel lakes. Similarly, because of thermal storage, temperature is a few degrees lower than that of other streams in the spring and a few degrees higher in the fall.

Variations in mean monthly water temperature of the Kawishiwi River near Ely and air temperatures for Northeastern Division are shown in figure 30. The largest difference in monthly values occurs in the winter when air temperatures are below freezing. Average monthly stream temperatures exceed air temperatures every month except April, when they are identical. For water years 1967-77, the annual mean water temperature at Kawishiwi River near Ely exceeded the annual mean air temperature of the Northeast Division by an average of 5.8°C.

Stream temperature fluctuated diurnally at the four continuous-temperature record sites, Partridge River near Hoyt Lakes, Kawishiwi River near Ely, Stony River near Babbitt, and Dunka River near Babbitt, during ice-free periods. Specific conductance did not change appreciably on a diurnal basis.

Typical graphs of water temperature, specific conductance, and discharge (fig. 31) were constructed from hourly data collected at Stony River near Babbitt for July 26-August 1, 1976. During the 7-day period, there was a gradual decline in discharge and a corresponding increase in specific conductance. Diurnal fluctuations of water temperature were significant throughout the week.

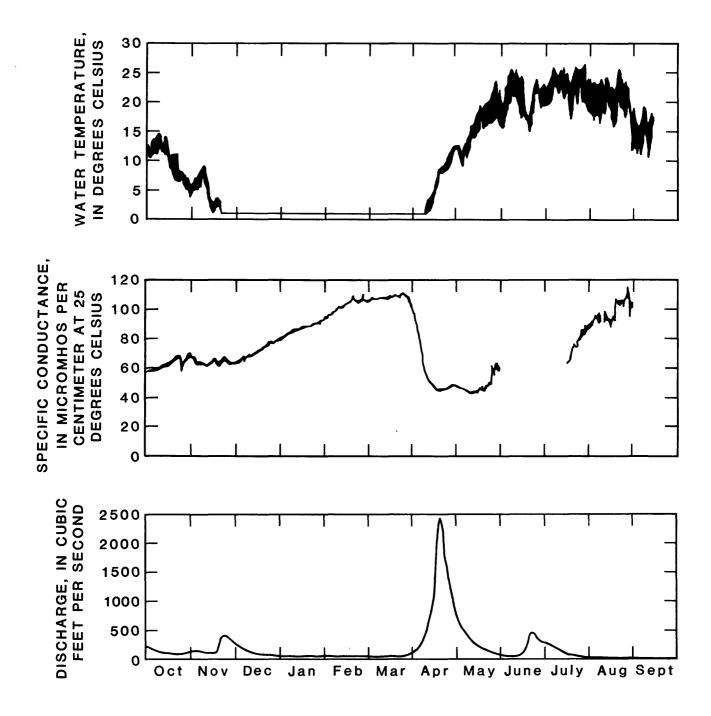


Figure 27.--Daily range of water temperature, specific conductance, and daily mean discharge of the Stony River near Babbitt, Minnesota, 1976 water year

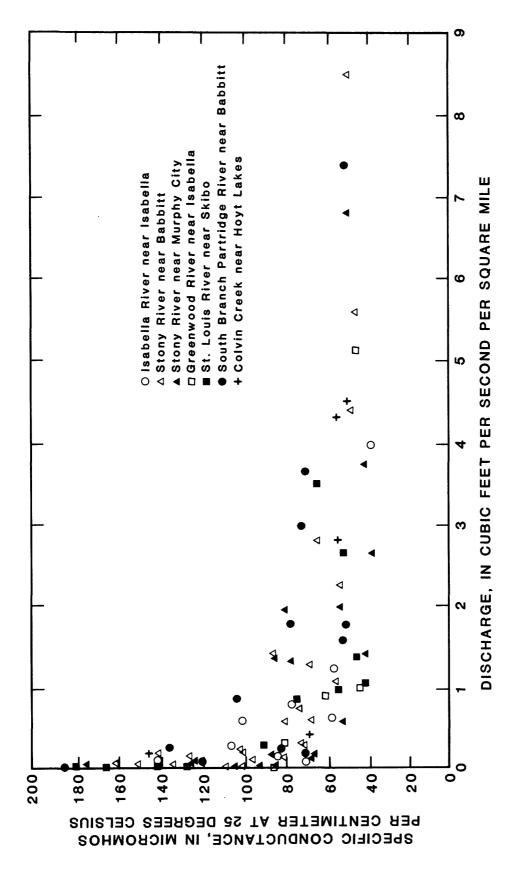


Figure 28.--Specific conductance-discharge relationship for unregulated streams

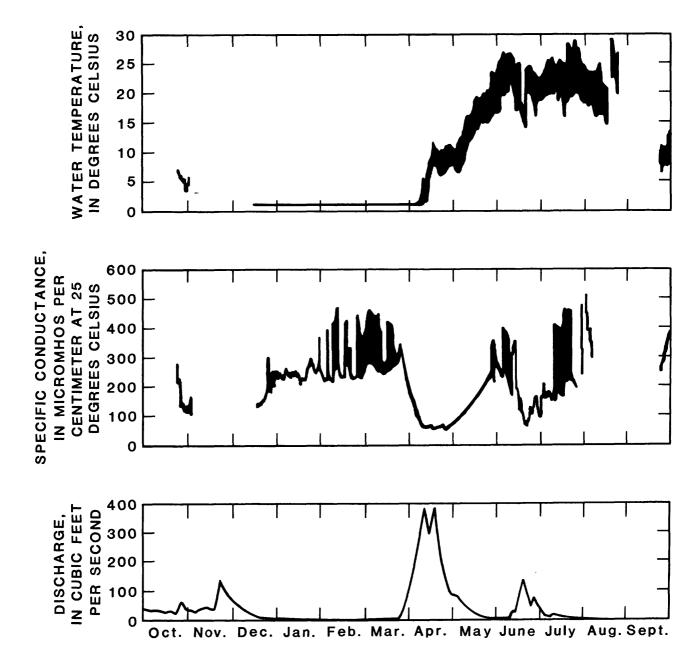


Figure 29.--Daily range of water temperature, specific conductance, and daily mean discharge of the Dunka River near Babbitt, Minnesota, 1976 water year

area
study
in s
temperatures
water
and 1
air a
for
statistics for
monthly
and
19Annual
Table 1

Site no.	Station name	1977	1976	Annual 1975	(water 1974	' year) 1973	mean wa 1972	(water year) mean water temperature (°C) 1974 1973 1972 1971 1970 1969	iperatu 1970	re (°C) 1969	1968	1967
ω	Partridge River near Hoyt Lakes	4. 6 *	* 9 • 5	1								
33	Kawishiwi River near Ely	10.0	10.1	6•6	9.8	0.0	8.9	8.7	7.8	8.4	8.5	8.7
	Babbitt		9.5									
5	Dunka Kiver near Babbitt	*9.2	* 9 • 5								-	
				Annual	l (water		mean a	year) mean air temperature	eratur	()°) ə		
	Northeast Division	2.9	4.3	3.7	2.9	3.7	2.4	2.9	3.2	3.6	3.4	2.3
*ES	*Estimated for part of year.	•										
	Mean monthly	and	annual wa	water temperature	peratur		for 196	(°C) for 1969-77 water years	ter ye	ars		
Stati	Station name Oct. Nov.	v. Dec.		Jan. Feb.	o. Mar.	. Apr.	May	June	July	Aug.	Sept.	Annual
Kawis nea	Kawishiwi River near Ely 9.6 4	4.0]	1.2 0	0.6	0.7 1.2	.2 3.7	μ . II.	17.8	20.9	20.6	17.3	9.1
	Mean monthly		and annual a	air temperature	erature	J (0°) é	or 1969	(°C) for 1969-77 water years	er yea	rs		
North	Northeast Division 6.3 -2.7	.7 -10.8	.8 -14.9	4 . 11 . 4	.4 -4.5	5 3.7	10.2	15.2	18.3	17.2	12.1	3.2
	Mean monthly	and	annual ai	air temperature	rature	Joj (Jo)	r 1941-	1941-70 calendar years	ndar ye	ears		
Babbi North	Babbitt 2 SE ^a 7.2 -3.0 Northeast Division ^a . 7.4 -2.1		-10.6 -14.1 -9.8 -13.2	1.1 –11.6 3.2 –11.1	.6 -4.7 .1 -4.5	-7 3.9 5 3.9	11.0	16.3 15.1	19.1 18.3	17.9 17.1	12.4 12.5	3.6
ano NC	^a NOAA climatological station NOTEAir temperature data		NOAA "C	from NOAA "Climatological Data	ogical	Data -	Minnesota".	ota".				

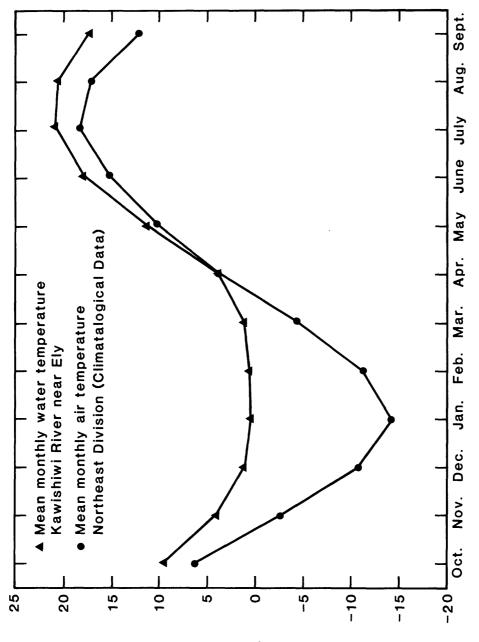
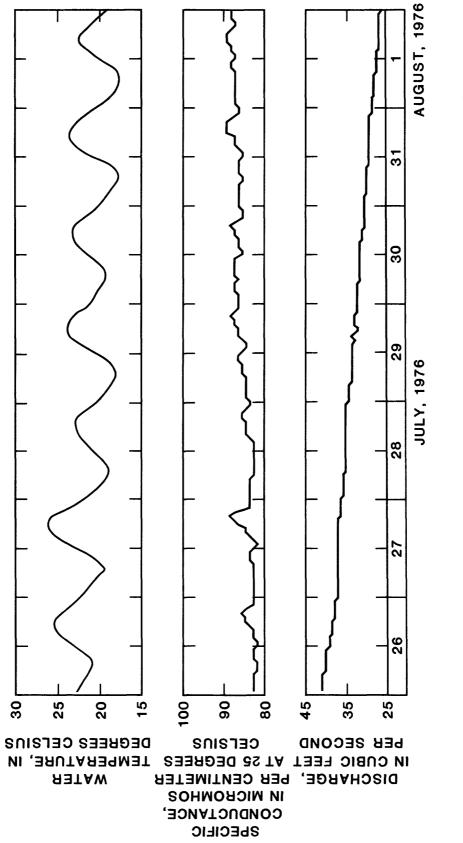



Figure 30.--Average monthly air and water temperature at the Kawishiwi River near Ely, Minnesota, 1967-77 water years

TEMPERATURE, IN DEGREES CELSIUS

Daily variations in water temperature at Kawishiwi River near Ely are smaller than other streams during open-water periods and seldom exceed 2°C. Daily water temperatures fluctuate less probably because of temperature stratification in the on-channel lake several hundred yards upstream from the gage.

HYDROLOGIC BUDGET

The similarity of annual hydrologic budgets (table 20) for the Kawishiwi River watershed above Winton and the St. Louis River watershed above Aurora (fig. 32) suggest that hydrologic conditions in the two areas are not very different. The budgets, based on average annual data for 1955-76, present water gain, storage, and loss for the watersheds. Hydrologic factors that were considered in the water budget are given in the following equation:

Precipitation = runoff + evapotranspiration + underflow + changes in storage

On a long term basis, underflow and changes in storage can be assumed to be negligable (Lindholm and others, 1978). Based on available data, it is assumed that ground-water divides are coincident with surface-water divides and that ground water does not move across divides. Ground-water storage changes continuously, but, over a long period of time, increases in storage tend to equal decreases.

Average annual precipitation for the watersheds was based on 22 years of record, 1955-76, at Babbitt and Whiteface Reservoir. Average annual runoff was based on gaging station records (1955-76) at Winton and near Aurora.

Evapotranspiration was calculated as the difference between precipitation and runoff. Potential evapotranspiration for Babbitt was calculated by the Thornthwaithe equation (Gray, 1970). Potential evapotranspiration was 21.4 inches and favorably compares to residual values of 18.1 inches for the Kawishiwi River watershed and 17.6 inches for the St. Louis River watershed. Both watersheds have similar vegetation and are generally underlain by similar types of drift. Runoff per square mile of watershed is nearly identical.


WATER USE

Water-use data were obtained from State, municipal, and private sources. Appropriation permits provided by the Minnesota Department of Natural Resources were the main source of data on water use applicable to municipal supply systems, irrigation wells, thermoelectric power generation, mine dewatering, and ore processing. It was assumed that most of the water removed for mine operations was from ground-water storage rather than from precipitation or surface-water runoff.

Underflow and change in storage	0 0
Evapo- transpiration	18.1 17.6
Runoff	9.4 9.6
Precipitation	27.5 27.2
	Kawishiwi River watershed

Table 20.--Approximate annual water budgets, in inches, for the Kawishiwi River watershed above Winton and the St. Louis River watershed above Aurora

١

State base map, 1:1,000,000, 1965

EXPLANATION

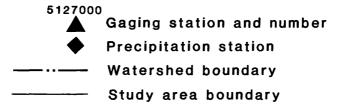


Figure 32.--Locations of the stream gages and precipitation stations for the Kawishiwi River watershed above Winton, and the St. Louis River watershed above Aurora, Minnesota Rural and other domestic uses were estimated by multiplying an average per capita use of 75 gal/d by population (1970 census) of individual townships and unorganized townships. Water use by tourists was estimated by visitor days per resort. Water use by hydroelectric generation was obtained from Geological Survey streamflow records (1971-77). Stock watering was estimated from estimated animal population determined for parts of counties within the region.

Total water use was nearly constant during 1971-75, ranging from about 200 to 250 billion gallons per year. During the drought of 1976, total water use decreased to about 170 billion gallons per year. Data summarizing water use between 1971-76 are given in table 21. Locations of major water use are shown in figure 33.

During 1971-75, between 69 and 75 percent of water used was related to hydroelectric power generation at Winton (fig. 34). Another 17 to 30 percent (also nonconsumptive) was for thermoelectric power generation at Colby Lake. During 1976, total water use for hydroelectric power generation decreased to 61 percent, while water use for thermoelectric power generation increased to 30 percent. Less than 3 percent of water used during 1971-76 was for municipal, rural, and irrigation needs. Mine dewatering accounted for between 2 and 6 percent of total water use.

Between 1971 and 1976, mine dewatering used between 5 and 12 billion gallons per year, about 95 percent of the ground-water use in the region (fig. 35). The combined ground-water use for municipal and rural supplies accounted for about 5 percent of the total ground water usage. About half of this use, between 200 and 300 million gallons per year, was withdrawn by the village of Aurora and the city of Babbitt.

Ground-water use remained fairly constant during 1971-76 (fig. 36). It is likely that ground-water use will temporarily increase with additional mining. Total use in 1974 nearly doubled as a temporary effect of eight new taconite mine operations, but long-term use did not appreciably increase.

Additional mining associated with copper and nickel exploration and development may increase withdrawal of ground water by 10 to 20 percent if open-pit operations intersect thick saturated surficial sand and gravel aquifers in the center of the Dunka River Basin or near the mouth of the Partridge River.

Projection of increased ground-water use by new and expanded cities will depend upon population increases. Due to limitations of ground-water availability, such use will necessarily be confined to sand and gravel aquifers underlying the Embarrass and Dunka Rivers and near the mouth of the Partridge River.

Almost all surface water is used for generation of power. Between 1971 and 1976 approximately 97 percent of surface-water use was for combined hydrolectric and thermoelectric power generation at Winton and at Colby Lake. Mine operations used 3 percent. Less than 1 percent was used by the city of Ely for municipal supply.

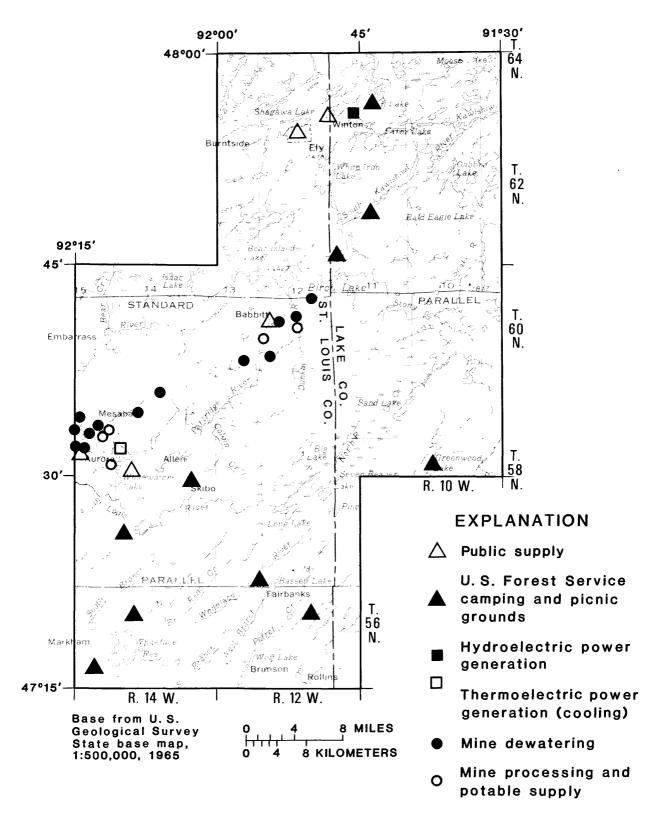


Figure 33.--Location of water use

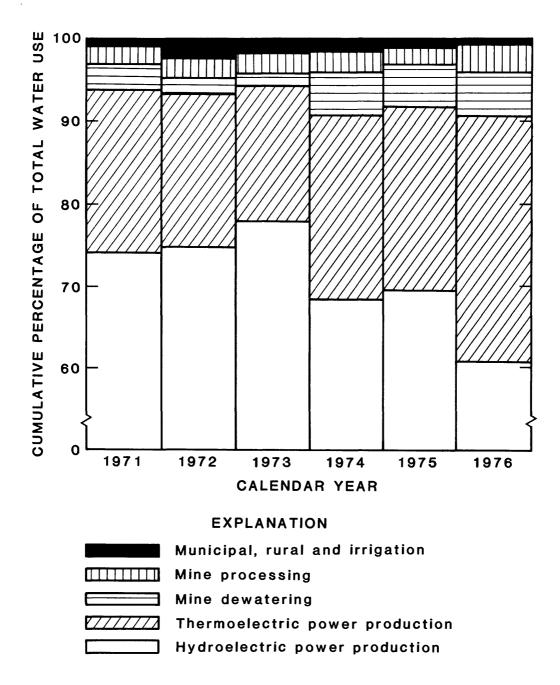


Figure 34.--Total water use expressed as cumulative percentage

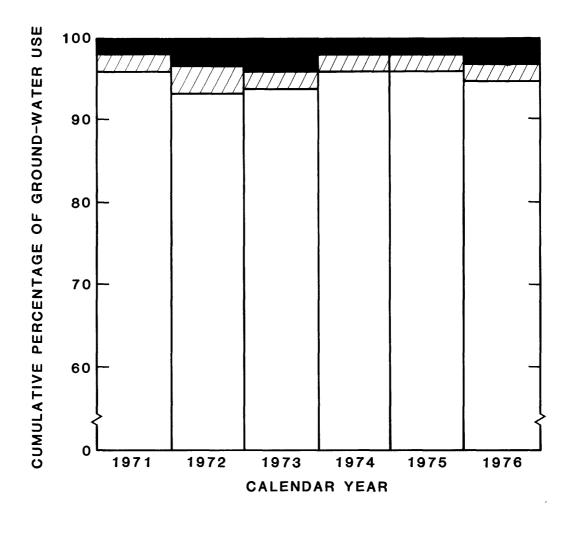


Figure 35.--Ground-water use expressed as cumulative percentage

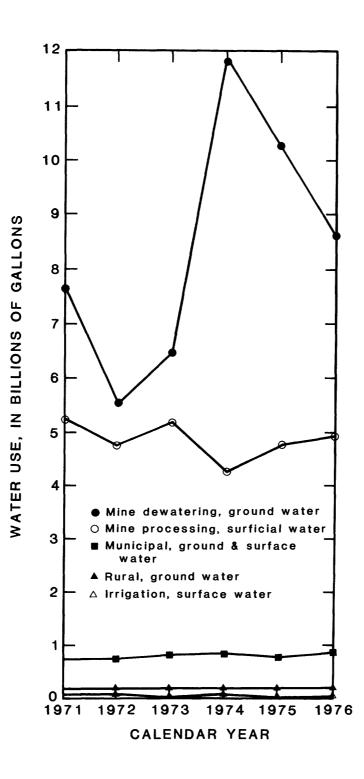


Figure 36.--Total water use, 1971-76, by major use (excluding hydroelectric and thermoelectric usage)

The largest industrial user of surface water was Erie Mining Company, which removed between 4 and 6 million gallons per year from Knox Creek and Whitewater Reservoir during 1971-76.

POTENTIAL IMPACTS OF MINING ON THE HYDROLOGIC SYSTEM

The impacts on the hydrologic system of potential copper and nickel mining and associated development include (1) aquifer dewatering and surfacewater diversions by open-pit activities, (2) increased use of water by new and expanded cities, and (3) water-quality changes caused by mine discharge and tailings ponds. The data gathered for this study were for regional evaluation. Additional studies would be necessary to evaluate the potential impacts of mining at specific sites.

Mine Dewatering

In general, the effects of mine dewatering on ground-water levels will be minimal for new open pit or underground mines. The bedrock and overlying surficial materials along the contact zone between the Duluth Complex and older bedrock generally have low permeability. Dewatering of individual underground mines will be less than about 25 gal/min because fracture permeability in most of the Duluth Complex is low and discontinuous. Because of its extreme depth, little is known about the permeability of the Biwabik Ironformation underlying the Duluth Complex. Water under confined conditions could seep upward to mines in the Duluth Complex if the mine penetrated near or into the Biwabik Iron-formation.

Mine dewatering may be significant from open-pit operations that intersect buried channels filled with sand and gravel, or if the pits are in hydrologic communication with streams, thick saturated sand and gravel aquifers, or leached zones in the Biwabik Iron-formation. The areal extent of the effect of mine dewatering on the water table will depend on local hydraulic gradients, hydraulic conductivity of the aquifer, and total saturated thickness intersected by the mine walls.

Table 22 presents calculated ground-water discharges from surficial materials to hypothetical open-pit mines shown in figure 37. The discharges were calculated by one-dimensional analysis and Darcy's law and utilized the surficial geology and drift thickness data given in plates 2 and 3 of Olcott and Siegel (1978). Hydraulic gradients were assumed to range from 10 to 40 feet per mile. Hydraulic conductivity values are from table 7 of this report. Because of the lack of site-specific data, potential discharges have been calculated conservatively to determine the possible extreme values. Accurate estimates for specific mines will require site-specific studies.

Ground-water discharge to hypothetical mines in areas 1, 4, 5, and 6 should be minimal owing to the relative impermeability and thin saturated thickness of the material in the drift. Ground-water discharge to an openpit mine in area 3 potentially could have significant long-term impacts upon mining operations and the local ground-water system. Underlying the terminal moraine south of the proposed mine site are sand and gravel deposits, up to

Estimated sustained ground-water discharge, in gallons per minute 240-acre 400-acre pen-pit mine open-pit mine	As much as 200	200 to 2,000	As much as 400	As much as 200	As much as 400	As much as 500
Estimated sustal discharge, in ge 240-acre open-pit mine	As much as 100	100 to 1,000	As much as 200	As much as 100	As much as 200	As much as 200
Drift type	T111.	Till and peat in northern half, sand and gravel in southern half.	Till; sand and gravel on north and east sides.	Till and peat.	Till and peat; possible sand on NW margin.	Till and peat.
Estimated range of saturated thickness of drift on mine wall, in feet	5 to 10	5 to 50	5 to 15	5 to 10	5 to 20	20 to 100
Approximate location	1,2 T.61N.,R.11W., Sec.24	T.60N.,R.12W., Sec.2	T.60N.,R.12W., Sec.29	T.60N.,R.12W., Sec.31	T.59N.,R.14W., Sec.35	T.57.,R.14W., Sec.14
Map Key	1,2	ŝ	4		Ś	9

Table 22.--Ground-water discharge to hypothetical open-pit mines

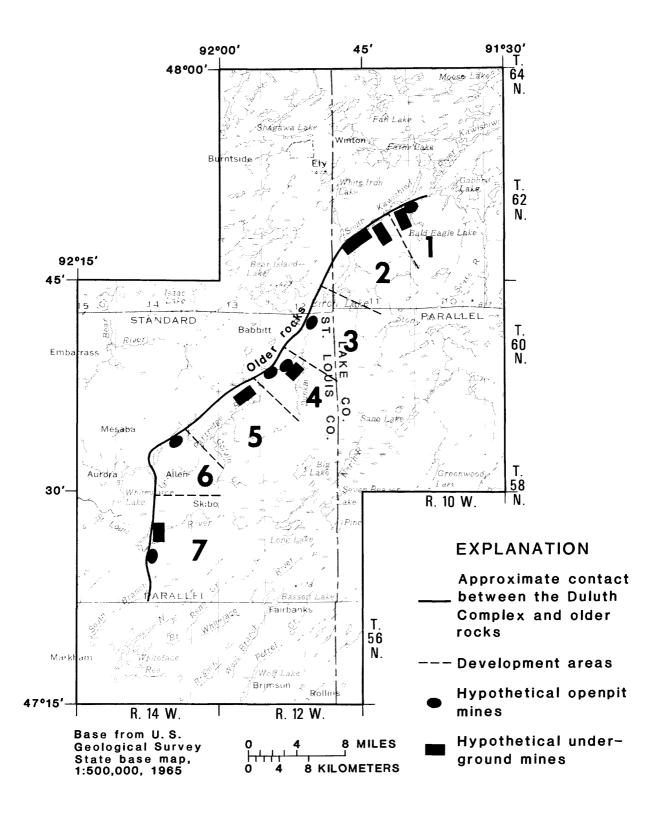


Figure 37.--Hypothetical mining areas and mine sites (from data supplied supplied by the Regional Copper-Nickel Study Staff, 1978)

50 feet thick, which are in hydraulic connection with the aquifer underlying the Dunka River basin. Discharge to the mine from these deposits could be as much as 2,000 gal/min. Such continuous discharge could ultimately displace the Dunka Basin ground-water divide southward and divert streamflow from the Dunka River to the mine. A similar diversion west of the hypothetical openpit operation occurs from springs that discharge as much as 500 gal/min to the Erie Dunka Mine Pit. The source of the springs is buried sand and gravel that is exposed on the mine wall.

Additional Water Use

Increased ground-water withdrawals from surficial aquifers for municipal or other needs will depress the water table around pumping wells. Sand and gravel deposits underlying the Embarrass, Dunka, and Lower Partridge Rivers are the only eligible aquifers for extensive development. Of these, the surficial aquifer underlying the Embarrass River offers the best potential. Standard engineering practice in well-field design generally limits drawdown at a pumping well to two-thirds the saturated thickness of the aquifer. Therefore, assuming a minimum saturated thickness of about 150 feet, it would be theoretically possible to pump 2,000 gal/min continuously for a year from a well in the aquifer underlying the Embarrass River valley before the engineering limit is reached (fig. 38). The city of Babbitt, with a current population of about 2,900, used about 130 million gallons of ground water in 1976. This would be equivalent to 45 days of pumping at 200 gal/min. Projections of increased population by the year 2000 as a result of both copper and nickel mining and expanded taconite production is as much as 15,000 (Eric Bauman, written commun., 1978). Assuming that the additional population were to live in Babbitt, the five-fold increase in ground-water usage would still be well within the limits of the adulfer. As some of the additional population will be dispersed, impact on the aquifer would be less.

Water Quality

Water-quality impacts from mining activities upon the ground water and surface-water systems can be best evaluated with respect to the siting of potential point sources of chemical contamination to the natural system, such as mines, tailings ponds, lean-ore stockpiles, and waste-rock dumps. Leachates from these sources may contain concentrations of trace metals much greater than median concentrations in ground water. For example, copper and nickel concentrations from ground-water discharging from a bulk-ore sample site (T. 62 N., R. 11 W., sec. 25) near Filson Creek are as great as 700 ug/L. Concentration in water from nearby wells are less than 25 ug/L. Water from observation well H-2, finished at the base of the sample site, had copper and nickel concentrations of 370 and 3,800 ug/L, respectively, in April 1976. Cobalt concentration. Optimum location of sites for tailings basins, stockpiles, and other similar facilities would utilize natural hydrogeologic controls to minimize water contamination.

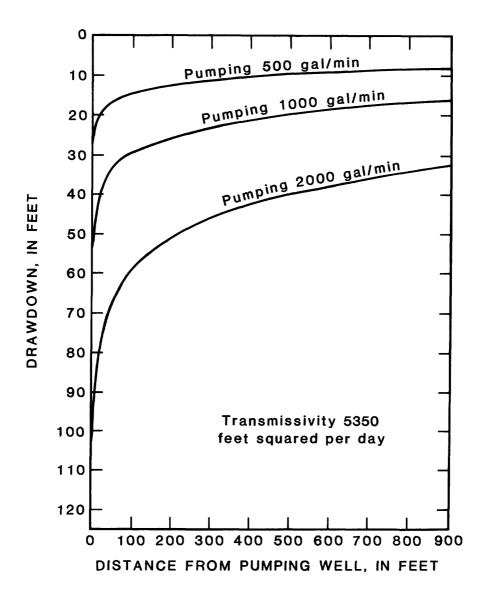


Figure 38.--Theoretical distance-drawdown curves for a well pumping from the aquifer underlying the Embarrass River

The potential for contamination of ground water is reduced where natural barriers prevent vertical ground-water flow. To guide discussion of possible impacts on the natural environment, the Regional Copper-Nickel Study Staff has delineated hypothetical mine development sites (fig. 37) adjacent to the contact between the Duluth Complex and older rocks. With the exceptions of areas 3 and 4 the surficial materials east of the contact are generally either till or peat, which restrict infiltration and ground-water movement. Drift in areas 1, 2, 5, 6, and 7 is generally less than 10 feet thick along and east of the contact and is underlain by bedrock of low permeability. Seepage from tailings basins and stockpiles into the ground-water system would be minimal in these areas. By placing potential sources of leachate in small wetland basins, contamination may be further reduced by the natural removal of some potentially toxic metals by organic compounds.

In the Dunka River basin, water bearing sand and gravel deposits are greater than 50 feet thick (Olcott and Siegel, 1978). Contamination of the ground-water system in these areas by mining activities could be minimized by placing stockpiles and tailings basins several miles to the east or south where bedrock is at the surface or is covered by thin deposits of till or peat.

SUMMARY AND CONCLUSIONS

Data were collected to identify the location and nature of ground-water resources, determine the flow characteristics and general quality of major streams, and to determine possible hydrologic effects of future mining of copper and nickel.

Ground-water investigations indicate that water generally occurs in local flow systems within surficial deposits along flow paths between 1 and 2 miles long from topographic highs to streams, lakes, and wetlands. Hydraulic gradients range from about 600 ft/mi along the flanks of the Embarrass Mountains to about 5 ft/mi in wetland areas. Hydraulic conductivities range from 10 to 3,500 ft/d for sand and gravel aquifers and from 10^{-5} to 10^{-1} ft/d for the sandy till and discontinuous peat that mantles most of the study area.

Water in bedrock generally occurs in fractures in the upper few hundred feet of bedrock units. Near its outcrop, the Biwabik Iron-formation has additional secondary porosity resulting from the leaching of hydrous minerals.

The water table decline during the drought between spring 1976 and summer 1977 averaged from 4 feet in sand and gravel to about 6 feet in till.

Availability of ground water is highly variable. Small water supplies of 1 to 5 gal/min are obtained over most of the area from shallow dug wells in drift or in the upper fractured zone of bedrock. The large sand and gravel deposits underlying the Dunka River and Embarrass River sand plain (Olcott and Siegel, 1978) are capable of yielding up to 1,000 gal/min to properly constructed wells. The quality of ground water is generally good. Most water in the surficial deposits is moderately hard to hard and is a calcium magnesium bicarbonate type. Oxidation of copper and nickel sulfides increases the sulfate concentration in water near the mineralized contact zone between the Duluth Complex and older rocks.

Average concentrations of most major constituents in water in till are about twice that in water in sand and gravel. Concentrations of major constituents in water from surficial deposits do not significantly change during the year.

Concentrations of chromium, cadmium, lead, silver, mercury, and selenium are less than 5 ug/L in water from surficial deposits. Concentrations of copper, nickel and cobalt are generally less than 5 ug/L but may exceed 25 ug/L over the mineralized zone.

The quality of water in the Duluth Complex is highly variable. Sodium chloride type water occurs at depth, and may have a specific conductance greater than 4,000 umho/cm at 25°C. Water in the near-surface fractures within the Duluth Complex, Giants Range Granite, and Animikie Group has a quality similar to that of water from the overlying surfical material. In general, specific conductance of all ground water in the area can be correlated with hardness and dissolved solids.

Surface-water studies indicate that the average annual runoff from streams is about 10 inches, which is exceeded in Minnesota only by streams on the North Shore of Lake Superior. High precipitation, low evapotranspiration, and bedrock near or at land surface in much of the area are factors contributing to the high runoff.

The streams have similar patterns of flow except where regulation is extensive. About 60 percent of the annual runoff occurs during snowmelt in April, May, and June, whereas less than 11 percent occurs during the low-flow period from December through March.

Streamflow is affected significantly by the large volume of surface storage available in lakes and wetlands. Wetlands are located throughout the area, but lakes are concentrated primarily in Kawishiwi and Shagawa River basins. As water levels recede, streamflow is sustained by water released from surface storage.

Discharge of ground water to most streams is small because aquifers are generally small and discontinuous. For example, the average base-flow yield at most nonregulated low-flow measurement sites in August 1976 was less than $0.1 (ft^3/s)/mi^2$.

The estimated average suspended-sediment yield at sediment stations on Kawishiwi, Dunka, and Bear Island Rivers is approximately 5 (ton/mi²)/yr, which is less than that of most streams in the State. On-channel lakes upstream from the Kawishiwi and Bear Island stations trap suspended sediment and decrease the average yield.

Specific conductance of unregulated streamflow is inversely proportional to discharge. In periods of low flow, specific conductance can be as high as 200 umho. However, specific conductance is generally less than 60 umho when flows are high.

Water use was nearly constant during 1971-75, ranging from about 200 to 250 billion gallons per year. Between 85 and 95 percent was used for hydroelectric power generation at Winton and thermoelectric power generation at Colby Lakes. The remaining percentage reflects mine dewatering and domestic use. Mine dewatering accounts for about 95 percent of ground-water use. Projected increases of ground-water use by new and expanded cities will not adversely affect the major aquifers underlying the Embarrass River valley and near the Partridge River near Aurora. Unless new mining activities intersect thick sand and gravel deposits, the effects of mine dewatering upon the water table should be minimal.

Estimated ground-water discharge to projected underground mines is less than 25 gal/min. Ground-water discharge to projected open-pit mines ranges from about 100 gal/min, for mine sites underlain by thin till or peat, to about 2,000 gal/min for mine sites underlain by thick sand and gravel.

If tailings basins and ore stockpiles are located on sand and gravel deposits, such as near the Dunka and Embarrass Rivers, the introduction of trace metals to the ground-water system is possible. These impacts would be minimized by placing these facilities in parts of the study area having till and peat less than 10 feet thick and which are underlain by the relatively impermeable rocks of the Duluth Complex.

REFERENCES

- Brown, E., Skougstad, M. W., and Fishman, M. J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter Al, 160 p.
- Cotter, R. D., Young, H. L., Petri, L. R., and Prior, C. H., 1965, Waterresources in the vicinity of municipalities on the western Mesabi Iron Range, northeastern Minnesota: U.S. Geological Survey Water-Supply Paper 1759-B, 36 p.
- Erskine, C. F., 1975, Report on glacial drift pumping tests performed at the Minnamox Project, February 22 to 26, 1975: Amax Inc., Environmental Services Group, Denver, Colorado, 32 p.
- Gray, D. M., ed., 1970, Handbook on the principles of hydrology: Water Information Center, Inc., Port Washington, New York.
- Hem, J. D., 1975, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Krumbein, W. C. and Monk, C. D., 1943, Permeability as a function of the size parameters of unconsolicated sand: American Institute of Mining and Metallurgical Engineering Transactions, Petroleum Division, v. 151, p. 153-163.
- Lindholm, G. F., Ericson, D. W., Broussard, W. L., and Hult, M. F., 1978, Water-resources of the St. Louis River watershed northeastern Minnesota: U.S. Geological Survey Hydrologic Investigations Atlas HA-586.
- Maclay, R. W., 1966, Reconnaissance of the geology and ground-water resources in the Aurora area, St. Louis County, Minnesota: U.S. Geological Survey Water-Supply Paper 1809-U, 20 p.
- Olcott, P. G. and Siegel, D. I., 1978, Physiography and surficial geology of the Copper-Nickel study region northeastern Minnesota: U.S. Geological Survey Water-Resources Investigations 78-51, 41 p.
- Stark, J. R. 1977, Surficial geology and ground-water geology of the Babbitt-Kawishiwi area, northeastern Minnesota with planning implications: Madison, University of Wisconsin, unpublished master's thesis, 110 p.
- U.S. Geological Survey, 1976, Water resources data for Minnesota, water year 1975: U.S. Geological Survey Water-Data Report MN-75-1, 513 p.

____1977, Water resources data for Minnesota, water year 1976: U.S. Geological Survey Water-Data Report MN-76-1, 896 p.

____1978, Water resources data for Minnesota, water year 1977: U.S. Geological Survey Water-Data Report MN-77-1, 276 p.

	h 		1	`		89				,	003	001		150	159	158		155		910	;	88							1	_													_		v			cv :	1	Map 1D# U	
	INVINE, REACTIONAL, WATTER LISE	INIXISTRUAL - OTHER .	TUTALS	AMAX (69-0177)	(69-0165)	Reserve Mining - (69-0086)	Pittsburg FacUie Company	OPERATIONS AND POTABLE SUPPLY U.S. Steel - Stephens Mine Well	UND STATES STATES SUCCESSION	IVITVIS	600	Reserve Hinning (0, (P.M.M.) 001	Area 16 & 17	Area y Suuri We itworth	Alvea 9	Area 8	V1.0.1 3	Fite Mining Company – Area 1 Area 2	Knox Mine	Pittshuvz Pactfic (o-Lincolu (D Mine)	U.S. Steel - Stephens Mine (69-0088)	Minnesota Power' & Light Company	REMORE DIRACIES REPAIRS	HYDRONALACTIVIC FOWER A LLPDI COmpany	S'IVITAL		Vahlberg Zunbruchen	hertgation Mackte	WUNLS		Campgrounds (USPS) Campgrounds (others, estimated Resorts and cabins (estimated)	Stock wattership Jourtsin	Part of unorganized certaiory of Whiteface Reservoir	West Lake Part of While Township	marka iominity Part of unorganized territory of	Hortheast St. Louis Purt of Morse Township	Part of unorganized territory of	Village of New Loweship	Falchanks Township Part of Fall Lake Sociality	Part of Colvin Township Part of Colvin Township	Part of unorganized territory of	Village of Pabbitt Pabbitt (Dwnship	Whith, Surfay, state-surfaind interstite "tomiships and unorganized territorites Part of Auft Tomiship	TVPFALS	VILLE OF WITH OIL		City of Ely Vilage of Novi Lakes	Village of NabbitL	ABICIPAL SUPPLY SYSTEM	Use category and user	a for a second se
	224.041.100	1	5,259,900	-		009,62			and the second s								1					44,774,700	179,092,900		006,68		83.200		002		100		1						-					530,700	(WAC) 1	3,100	402,700			19 Surface	-
	8.047 700		200					200		7,636,500	4,119,200	000,086		433,300	-					231./00	762,400						Marana Para	-			200 200 5,000	000'81	1,100	13,700 35,600	12,000	30,100	2,000	300	5,200	21,900 6,600	16 100	13,000	500	000,212				1 02,000	1		-
· · · · ·	050 101 050		4,769,000		; ;	28,000	h 7h1 (101)	-			-											43,798,700	100,979,300	180 074 200	58,200		55.100	3,100	001		300			† I	-									524,800	9,700	1,000	387,800 126,300		3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 Surface	and of a supervision of the supe
	2 936 900	- Marina Marina	001					100		5,503,100	2,323,800	001,E00,E	nug cita	587,800						274,400	371,200		-					1	199,000		200 5,000	18,000	1,100	13,700 35,600	12,000	30,100 30,100	000,2	300	5,200	000,12 009,9 00,92	16 100	13,000	500	224,700				122,800 101,900		1972 Ground	
	oldi asa non		5,161,000			000,92	- 135 DOD			-	-			1							1	42,800,100	10,454,400	106 HER 100	13,200		9 800	3,400			200		-		*14000									530,000	1,100	1,400	398,000 123,500			l' Surface	
0,916,100	6 073 700		100		; [-		100	1	6,406,400	3,143,900	862,500	1 053 000	720,400		1				251,500	464,200		-			a series and a series of the series of		1	199,000		5,000 200	300'RI	1,100	13,700 35,600	NOC 21	30,100	2,700	3 300	2,200	, 909 9 100 - 10	16 hor	13,000	500	277,200		No. of the second s		178,600 98,600		1973 Сгонис	[In thousands of gallons]
	87 324 700		4,239,500			32,100	1 207 100									1 III					-	11,200,200	130,220,100	001 000 801	39,600		34, 600	5,000	300	100	200	1		1	. ,			,					-	535,000		1,800	102,500) Surface	of gallons]
	000 065 61	100	100					100		11,816,800	2,949,600	1,541,800	987 900	605,300	294,800	855,700	333,000	, 309, tuo	· · · · · · · · · · · · · · · · · · ·	241,500	529,600							1	199,100		5,000	000,71	1,100	13,700 35,600	12,000	30,100	000, 2	3 3 00	2,200	009'9 009'9 001'91	16 100	13,000	500	313,600				205,500 108,100		1974 Ground	
	202 466 600		4,743,600		23,500	11,900	4.637.200						.		-					s 	;	006,602,60	149,00,,000		2,300			2,300	0.05	2006	200 100		-)						-	538,500	1,100	1,600	120,100]¢ Surface	
		1,000	13,000		700			600		10,267,300	2,318,000	872,200	007 896 1	574,300	132,500	766,500	257,100	135,100	1,374,500		431,300							-	009, 961	106 604	5,000 5,000	006,61	1,100	13,700 35,600	12,000	30,100	2,500	300	2,200	000 1 c 009 9 001 61 c	JE Hon	13,000	500	239,700				132,500 107,200		1975 Groinsi	
	160 883 000		÷ ,906 ,100	000, S	,8,70	0.4 6	008,356,200	16								40.000			-	1	:	000,737,00	104,103,200	101 163 300	006,6	The state of the s		900, 6	300	900	100		Access of the		-				-				1	567,400	0,000	1,700	409,400		n yn dersenaan geste e gebe	19 Surface	
		Infiltration to aquifer.	300	Evaporation, Infilturation	den 14. ORMAL OR MAAR, DAMMAND			Di Secura Grada		8,559,300			185,900 terramed Greek to Dunka Rtv. 748–300 taxa bev Greek to Dunka Rtv.		9,600 Pitat Crock.	625,900 Ptr ' Obeck.	163,500 Physic Cryck.	214,800 Wyman Creet.	791,609 First Greek.	298, Jou Second Creek.	184,807. Second Church. 831-800 Second Church.	Goiny fase and farth deet hiver.	source and far proper store.		and the second			Evaloration to athesphere.			300 200 5,000		1,100	13,700 35,600	12,5000	13,100	2,300		2,200	21 900		13,000 systems. A treatment facility at Fail take		269,900	Trestument pratti, Swamp to patt trace.	do	Treatment plant	140,900 Treatment plant; creek to St. Louis Hiver. 128,100 Treatment plant; Enbarrass River.		1976 Greated , Julapossal	- man-and many factors and an anomaly served of the second served and

Table 21.---Water-use data for the Copper-Hickel study region, Minnesota, 19/1-/0

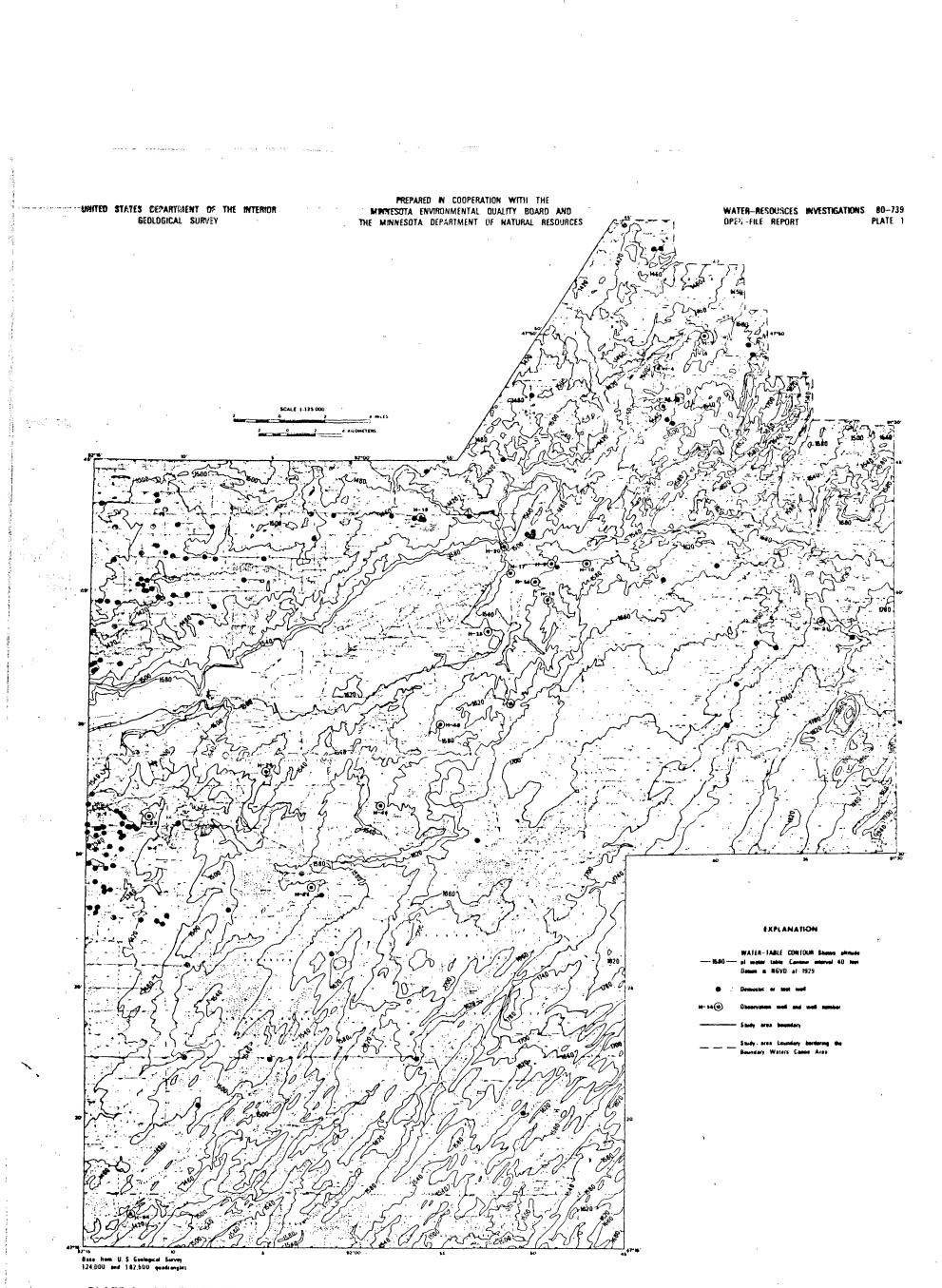


PLATE 1.--GENERALIZED MAP OF THE WATER TABLE IN THE COPPER-NICKEL STUDY REGION, NORTHEASTERN MINNESOTA